
Viz Arc Script Guide
Version 3.0

Copyright ©2026 Vizrt. All rights reserved.

No part of this software, documentation or publication may be reproduced, transcribed,
stored in a retrieval system, translated into any language, computer language, or transmitted
in any form or by any means, electronically, mechanically, magnetically, optically,
chemically, photocopied, manually, or otherwise, without prior written permission from
Vizrt. Vizrt specifically retains title to all Vizrt software. This software is supplied under a license
agreement and may only be installed, used or copied in accordance to that agreement.

Disclaimer

Vizrt provides this publication “as is” without warranty of any kind, either expressed or implied. This publication
may contain technical inaccuracies or typographical errors. While every precaution has been taken in the
preparation of this document to ensure that it contains accurate and up-to-date information, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained in this document.

Vizrt’s policy is one of continual development, so the content of this document is periodically subject to be modified
without notice. These changes will be incorporated in new editions of the publication. Vizrt may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.
Vizrt may have patents or pending patent applications covering subject matters in this document. The furnishing of
this document does not give you any license to these patents.

Antivirus Considerations

Vizrt advises customers to use an AV solution that allows for custom exclusions and granular performance tuning to
prevent unnecessary interference with our products. If interference is encountered:

 Real-Time Scanning: Keep it enabled, but exclude any performance-sensitive operations involving Vizrt-
specific folders, files, and processes. For example:

 C:\Program Files\[Product Name]
 C:\ProgramData\[Product Name]
 Any custom directory where [Product Name] stores data, and any specific process related to [Product

Name].

 Risk Acknowledgment: Excluding certain folders/processes may improve performance, but also create an
attack vector.

 Scan Scheduling: Run full system scans during off-peak hours.
 False Positives: If behavior-based detection flags a false positive, mark that executable as a trusted

application.

Technical Support

For technical support and the latest news of upgrades, documentation, and related products,
visit the Vizrt web site at www.vizrt.com.

Created on

2026/01/29

http://www.vizrt.com

Viz Arc Script Guide - Version 3.0

3

Contents
1 Introduction to Viz Arc Script Guide ...6

2 View ..7

3 Properties ..10

3.1 Action..11

3.1.1 Sample ..11

3.1.2 Alpha ...12

3.1.3 Chroma ...12

3.1.4 Command ...14

3.1.5 ControlObject ...14

3.1.6 Director ...14

3.1.7 Group ..14

3.1.8 Image ..14

3.1.9 Light ..15

3.1.10 Key...15

3.1.11 Material ...15

3.1.12 MSE..16

3.1.13 Multizone Chroma Key ...16

3.1.14 NDI...16

3.1.15 Omo...17

3.1.16 PBR..17

3.1.17 Phong ..18

3.1.18 Scene Loader ..19

3.1.19 Script...20

3.1.20 Shared Memory ..20

3.1.21 Telemetrics ...21

3.1.22 Text ...21

3.1.23 Tracking Hub Command ..21

3.1.24 Transformation...21

3.1.25 Utah Router ..22

3.1.26 Unreal Animation ...22

3.1.27 Unreal Blueprint ...22

3.1.28 Unreal Dispatcher...22

3.1.29 Unreal Scene Loader ..22

3.1.30 Unreal Sequencer...23

Viz Arc Script Guide - Version 3.0

4

3.1.31 Unreal Text ...23

3.1.32 Vinten ..23

3.1.33 Virtual Studio..23

3.1.34 Visibility...23

3.1.35 Viz Camera ..23

3.1.36 Viz Clip...24

3.1.37 Viz PBR Material..24

4 Classes ...26

4.1 Scripting ...27

4.1.1 General..29

4.1.2 Action ..30

4.1.3 Playlist...31

4.1.4 Control Object ..31

4.1.5 MIDI ...32

4.1.6 Art-Net DMX ..32

4.1.7 MQTT...33

4.1.8 RabbitMQ ..35

4.1.9 Object Tracker ..36

4.1.10 Viz Arena ...37

4.1.11 Parameter ...37

4.1.12 Channel...38

4.1.13 Viz Engine/Unreal Engine Communication...39

4.1.14 Tracking Hub Command ..41

4.1.15 SMM Handling...41

4.1.16 GPI ...41

4.1.17 Viz Pilot ...42

4.1.18 Timer ...42

4.1.19 StreamDeck ..52

4.1.20 Graphic Hub REST ..54

4.1.21 DataMap..57

4.1.22 NDI...58

4.1.23 File Handling...59

4.1.24 Logging ...60

4.1.25 JSON ...60

4.1.26 Excel ..61

4.1.27 Callbacks...62

4.1.28 Exposed Objects ...64

Viz Arc Script Guide - Version 3.0

5

4.1.29 xHost ...67

4.1.30 Performance ...68

4.1.31 Garbage Collection...69

4.1.32 SQL Sample ..69

4.1.33 SQLite Sample ..69

4.1.34 TcpSend ..71

4.1.35 HtmlAgility Example...71

4.1.36 Main Script-only ...72

4.1.37 Template Script-only ...73

4.1.38 Common Callbacks ..78

4.1.39 Parameters ...78

4.1.40 Unreal..97

4.1.41 Flowics ..98

4.1.42 Video ...101

4.1.43 Using async/await ..101

4.2 Profile ...103

4.2.1 Scripting Profile..103

4.2.2 Scripting Channel ...103

4.2.3 Scripting Engine ...104

4.3 Control Object..105

4.3.1 Control Container...105

4.3.2 Control Image ...106

4.3.3 Control Material..106

4.3.4 Control Omo ...106

4.3.5 Control Text ..106

4.3.6 Control List ...106

4.3.7 Control Integer ...108

4.3.8 Control Double ...108

4.3.9 Control Boolean ...108

5 Debugging Scripts ...109

5.1 DevTools...109

5.2 Visual Studio Code ...111

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 6

1 Introduction to Viz Arc Script Guide

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 7

2 View
In Script View, you can write your own custom script in JavaScript language through Google's V8 or Microsoft's
JScript (ECMAScript3) or in VBScript language, as in the following example:

It's possible to create custom forms and components, such as text boxes and buttons.

To run the script, select the Start button on the top left
of the window.

Form Design can be edited by selecting the UI button .
Every element can be selected and moved, aligned and
distributed on the main form.

To go back to code editing, select the CODE button or select
BOTH to have code and UI side by side.

To edit a script, press the Stop button on the top of the
script main window.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 8

Console logs and debugs are displayed in the CONSOLE pane.

When configured and licensed the AI Prompt can be used to
create or modify the global script.

Import code internally from the clipboard or an external text
file in the script pane.

Use the Language menu to select a scripting language.

 MS VBScript: Microsoft Visual Basic Scripting language
 MS JScript: Microsoft implementation of the ECMA 262 JavaScript
 V8 JavaScript: Google’s open source high-performance V8

JavaScript
 Using CommonJS syntax to import modules (using require).

 JavaScript ES6 (ECMAScript 2015): Open source high-
performance JavaScript

 Using ES Modules syntax to import modules (using import)

It is recommended to use JavaScript ES6 language when
possible.

In edit mode, Script Callbacks can be selected from the list and added:

https://learn.microsoft.com/en-us/previous-versions/t0aew7h6(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/scripting-articles/hbxc2t98(v=vs.84)
https://v8.dev/
https://262.ecma-international.org/6.0/

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 9

You can locate a custom function by selecting it from the Functions list:

See Also

 Scripting Classes

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 10

3 Properties
 Action

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 11

3.1 Action
All Actions in the project can be accessed and modified via scripting. Use the GetAction function to get a reference
to the action:

 BaseAction GetAction(string actionName)

Every Action type has these generic properties:

Action type Description

string Name The title of the action.

string Description By default this is the type of action (for example, "Key", "Chroma",
"Image" etc.). When assigned to a TransformationAction and visible on
the SET view, this field is used as a tooltip when the mouse hovers over
the element.

int ExecutionDelay Expressed in milliseconds, minimum delay is 0 (default), maximum

delay is 10000 (10 seconds).

Every Action type has these generic methods:

 void Execute(): Executes the action.
 void Preview(): Executes the action on the preview channel.
 void QueryState(): Queries the current state of the action from the Editing Engine. For example, if the

action is a transformation action, it retrieves the current transformation from the editing engine's scene tree
and updates the UI accordingly.

The example below shows how to set the alpha value to 75% of an Alpha Action called AlphaText and execute the
action from scripting:

3.1.1 Sample

var alphaAction = GetAction("AlphaText");
alphaAction.Alpha = 75.0;
alphaAction.Execute();

There are specific properties/functions for each action type:

 Alpha
 Chroma
 Command

Note: It's possible for a project to contain multiple actions that have the same name. If that is the case for
your project, the first Action created with a name is returned. Make sure to use unique names when
accessing actions through scripting.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 12

 ControlObject
 Director
 Group
 Image
 Light
 Key
 Material
 MSE
 Multizone Chroma Key
 NDI
 Omo
 PBR
 Phong
 Scene Loader
 Script
 Shared Memory
 Telemetrics
 Text
 Tracking Hub Command
 Transformation
 Utah Router
 Unreal Animation
 Unreal Blueprint
 Unreal Dispatcher
 Unreal Scene Loader
 Unreal Sequencer
 Unreal Text
 Vinten
 Virtual Studio
 Visibility
 Viz Camera
 Viz Clip
 Viz PBR Material

3.1.2 Alpha
Properties:

 double Alpha

3.1.3 Chroma
Properties:

 ChromaPrecisionContent Precision
 double hueAdjust

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 13

 double saturationAdjust
 int edgeBlur
 double despillScale
 double backingPlateR
 double backingPlateR
 double backingPlateR
 double yellowGain
 double cyanGain
 int denoiseRadius
 int denoiseSharpen
 double opacityPoint
 doube transparencyPoint
 double bgEdgeGain
 double bgSpillGain
 double bgLWBlur
 double colorEdgeGain
 double colorSpillGain
 double colorLightwrapR
 double colorLightwrapG
 double colorLightwrapB
 bool addShadows
 double innerShadows
 double shadowsGain
 bool addHighlights
 double innerHighlights
 double highlightsGain
 double masterLiftR
 double masterLiftG
 double masterLiftB
 double masterGammaR
 double masterGammaG
 double masterGammaB
 double masterGainR
 double masterGainG
 double masterGainB
 double masterSaturation

Sample

var action = GetAction("Chroma");
// sample for setting some color Precision Keyer settings
action.Precision.hueAdjust = -1140;
action.Precision.saturationAdjust = 2.0;

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 14

3.1.4 Command
Properties:

 string Command

3.1.5 ControlObject
See Control Object Classes.

3.1.6 Director
Properties:

 string DirectorType
 Possible values: START, STOP, CONTINUE, CONTINUE_REVERSE, PLAY_FROM, PLAY_FROM_REVERSE,

FROM_TO, GO_TO, PAUSE

3.1.7 Group
This action has no additional public properties.

3.1.8 Image
Properties:

 string Image
 Value should be a Graphic Hub path that starts with "IMAGE*"

 bool IsBuiltin
 string Builtin

 Possible values: LIVE1, LIVE2, CLIP1, etc.
 double PosX
 double PosY
 double RotX
 double RotY
 double RotZ
 double ScaX
 double ScaY

The Image parameter can be assigned to a Graphic Hub path when the string starts with "IMAGE*"; when it starts
with "http" it will be assumed to be a web link (or a Media Service link), otherwise it will be interpreted as a local file
path, see the samples below:

Sample

var imageAction = GetAction("Image");

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 15

imageAction.Image = "IMAGE*/VizArc/arcLogo";
// or
imageAction.Image = "http://127.0.0.1:21099/serve/original/AR_03.jpg";
// or
imageAction.Image = "C:/Users/admin/Desktop/CAKE.jpg";

3.1.9 Light
Properties:

 string LightType [read only]
 Possible values: NONE, SPOTLIGHT, DIRECTIONAL, AREA, POINT

 string LightColor
 double LightIntensity
 double DiffuseIntensity
 double SpecularIntensity
 double LightRadius
 double OuterConeAngle
 double InnerConeAngle
 int LightLayer
 double DirectionalSpread
 double RadiosityMultiplier

3.1.10 Key
Properties:

 bool KeyEnabled
 bool CombineBackground
 bool DepthInfoOnly
 bool DrawKey
 bool DrawRGB

3.1.11 Material
Properties:

 string ColorHex [#RRGGBB]
 string Diffuse [#RRGGBB]
 string Emission [#RRGGBB]
 string Specular [#RRGGBB]
 string Ambient [#RRGGBB]
 double Alpha [0…100]
 double Shiniess [0…100]
 bool UseSimpleColor

Functions:

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 16

 SetColorRBG(int r, int g, int b)

3.1.12 MSE
Properties:

 string Page
 string DirectorType

 Possible values: TAKE, CONTINUE, TAKE_OUT

3.1.13 Multizone Chroma Key
Properties:

 string ZoneName
 double Height
 double Altitude
 double Luminance
 double MinLuminance
 double MinGrad
 double MaxLuminance
 double MaxGrad
 double Blend
 double U
 double V
 double UVDiameter
 double UVGradient
 bool IsFullscreen
 bool PickLuma
 bool PickChroma
 bool PickInViz

3.1.14 NDI
Properties:

 int Preset
 Value must be between 0 and 99

 float Velocity
 Value must be between 0 and 1

Functions:

 void SetSource(string name)
 Sets the source to a different NDI source called name.

 void GotoPreset(int preset, float velocity)
 Goes to a stored preset preset. The value range is from 1 to 100. Move the camera using velocity (from

0.0 to 1.0), where velocity of 1 is maximum speed.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 17

 void GotoPreset(int preset)
 Goes to a stored preset preset. The value range is from 1 to 100. The velocity is determined on the

action’s current velocity property value.
 void StorePreset(int preset)

 Stores the current camera position as preset. The value range is from 1 to 100.
 void SetTally(bool program, bool preview)

 Sets or unsets the tally of the current NDI source to program or preview, or both.
 bool IsOnProgram()

 Returns whether the source is in program.
 bool IsOnPreview()

 Returns whether the source is in preview.
 void SetZoom(double value)

 Sets the zoom value of the NDI camera, the range is from 0.0 (fully zoomed out) to 1.0 (fully zoomed
in).

 void SetFocus(double value)
 Set the focus value of the NDI camera, the range is from 0.0 to 1.0.

 void SetPanTiltValue(double pan, double tilt)
 Sets the absolute pan and tilt values of the NDI camera, the ranges are for both from 0.0 to 1.0.

 void SetPanTiltSpeed(double pan, double tilt)
 Sets the pan and tilt speed values of the NDI camera, the ranges are for both from -1.0 to 1.0. If the

values are non zero, the camera moves continuously along the pan/tilt axis with the given speed and
direction.

3.1.15 Omo
Properties:

 int ElementIndex
 bool ShowUntil

3.1.16 PBR
Properties:

 Modes
 bool IsPreload
 bool IsGHMode

 GH Mode
 string PhongMaterialAsset

 Value should be a Graphic Hub path that starts with "MATERIAL_DEFINITION*"
 Values Mode

 Material Settings
 string ColorTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 |string ColorTint
 bool ColorIsSRGB

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 18

 string EmissiveTexture
 Value should be a Graphic Hub path that starts with "IMAGE*"

 string EmissiveColor
 double EmissiveIntensity
 string NormalTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string RoughnessTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 double RoughnessFactor
 string MetallicTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 double MetallicFactor
 string AmbientOcclusionTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string HeightTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 double HeightDepth
 string EnvironmentTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 double EnvironmentRotation

 Texture Settings
 double TillingU
 double TillingV
 double UvAngle
 double UvScaleU
 double UvScaleV
 double UvOffsetU
 double UvOffsetV

3.1.17 Phong
Properties:

 Modes
 bool IsPreload
 bool IsGHMode

 GH Mode
 string PbrMaterialAsset

 Value should be a Graphic Hub path that starts with "MATERIAL_DEFINITION*"
 Values Mode

 Material Settings
 string ColorTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 |string ColorTint
 bool ColorIsSRGB
 string AmbientTexture

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 19

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string AmbientColor

 For example: "#FF00A0"
 double AmbientIntensity
 string DiffuseTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string DiffuseColor

 For example: "#FF00A0"
 double DiffuseIntensity
 string SpecularTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string SpecularColor

 For example: "#FF00A0"
 double SpecularIntensity
 string EmissiveTexture

 Value should be a Graphic Hub path that starts with "IMAGE*"
 string EmissiveColor

 For example: "#FF00A0"
 double EmissiveIntensity
 double Shininess
 bool Lit

 Whether the material should be lit
 Texture Settings

 double UvAngle
 double UvScaleU
 double UvScaleV
 double UvOffsetU
 double UvOffsetV

3.1.18 Scene Loader
Properties:

 bool UseGUID
 string FrontUUID
 string MainUUID
 string BackUUID
 string GfxUUID
 string SubSceneUUID
 bool FrontClear
 bool MainClear
 bool BackClear
 bool GfxClear
 bool SubSceneClear
 bool FrontResetStage

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 20

 bool MainResetStage
 bool BackResetStage
 bool GfxResetStage
 int GfxLayerNumber [0,…,17]
 bool SubSceneResetStage

3.1.19 Script
Functions:

 dynamic GetParameterValue(string name)
 Returns the value of a Script UI element. The name is the name of the UI parameter as specified in the

viz script by the RegisterParameter* function.
 bool SetParameterValue(string name, dynamic value)

 Sets the value for a UI parameter. The name is the name of the UI parameter as specified in the viz
script by the RegisterParameter* function. Returns true on success.

Example

// get the script action with the name "scriptA"
let action = GetAction("scriptA")

// set some parameter values
action.SetParameterValue("aDouble", 3.3)
action.SetParameterValue("aInteger", 2)
action.SetParameterValue("aString", "another string")
action.SetParameterValue("aMultiString", "another\\nmultistring")
action.SetParameterValue("aBool", false)
action.SetParameterValue("aImage", "c:/tmp/test.jpg")

// read the parameter values
Console.WriteLine("aDouble value is " + action.GetParameterValue("aDouble"))

3.1.20 Shared Memory
Functions:

 string[] GetKeys()
Returns the list of keys present in the shared memory action.

 string[] GetValues()
Returns the list of values present in the shared memory action.

 string[] GetDestinations()
Returns the list of destinations present in the shared memory action.

 string GetKeyValue(string key)
Returns the value of key. Returns null if key is not present int the shared memory action.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 21

 string GetKeyDesitnation(string key)
Returns the destination of key. Returns null if key is not present int the shared memory action.

 void AddKeyValue (string key, string value)
Add key/value pair to the shared memory action.

 void AddKeyValue (string key, string value, string destination)
Add key/value pair to the shared memory action and set it to destination.

 void SetKeyValue (string key, string value)
Set a new value to to the key entry. Adds the pair if key is not present int shared memory action.

 void SetKeyValue (string key, string value, string destination)
Set a new value to to the key entry and set it to destination. Adds the pair if key is not present int shared
memory action.

 void SetKeyDestination (string key, string destination)
Change the destination to the key entry.

 void InsertKeyValue (int index, string key, string value)
Insert key/value pair to the shared memory action at position index.

 bool Remove (string key)
Remove key from shared memory action.

 void RemoveAt (int index)
Remove key at index position from shared memory action.

destination can be either "SYSTEM", "COMMUNICATION" or "DISTRIBUTED"

3.1.21 Telemetrics
Properties:

 int Program
 int Scene

3.1.22 Text
Properties:

 string Text

3.1.23 Tracking Hub Command
Properties:

 string Command

3.1.24 Transformation
Properties:

 double PosX
 double PosY
 double PosZ

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 22

 bool PosEnabled
 double RotX
 double RotY
 double RotZ
 bool RotEnabled
 double ScaX
 double ScaY
 double ScaZ
 bool ScaEnabled

3.1.25 Utah Router
Properties:

 int Source
 int Desitnation

3.1.26 Unreal Animation
Properties:

 string AnimationMode
 Possible values: LOAD, CONTINUE, PAUSE

 bool IsLooping
 double PlayRate
 double BlendTime
 string SelectedAnimation

3.1.27 Unreal Blueprint
See Control Object Classes.

3.1.28 Unreal Dispatcher
This action has no additional public properties.

3.1.29 Unreal Scene Loader
 bool GetStreamingLevelVisibility(int index)

 Returns true when the Streaming Level at position index is visible
 void SetStreamingLevelVisibility(int index, bool value)

 Sets the Visibility to value, at position index.
 string[] GetStreamingLevels()

 Returns the list of Streaming Levels present in the action.
 int GetNumberOfStreamingLevels()

 Returns the number of Streaming Levels present in the action.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 23

3.1.30 Unreal Sequencer
Properties:

 string DirectorType
 Possible values: START, STOP, CONTINUE, START_REVERSE, CONTINUE_REVERSE, PLAY_FROM,

PLAY_FROM_REVERSE, GO_TO, PAUSE
 int LoopCount
 double PlayRate

3.1.31 Unreal Text
Properties:

 string Text
 double ScaleX
 double ScaleY

3.1.32 Vinten
This action has no additional public properties.

3.1.33 Virtual Studio
Properties:

 int SelectedSceneIndex
 bool SendPosition
 string SetName
 double PosX
 double PosY
 double PosZ
 double RotY

3.1.34 Visibility
Properties:

 bool Visibility
 string VisibilityMode

 Possible values: ON, OFF, ONOFF, DUAL_MODE

3.1.35 Viz Camera
Properties:

 int SelectedCamera

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 24

 bool RemoteEnabled
 bool IsRemote
 bool AngleEnabled
 double Angle
 bool PosEnabled
 double PosX
 double PosY
 double PosZ
 bool DirEnabled
 double Pan
 double Tilt
 double Twist

3.1.36 Viz Clip
Properties:

 string ClipName
 bool IsLoader
 string ControlType

 possible values: START, STOP, CONTINUE, PAUSE
 string SelectedClipChannel
 bool PlayOnLoad
 bool HasLoop
 bool ShouldQueue

3.1.37 Viz PBR Material
Properties:

 bool IsPreLoad
 bool IsGHMode
 string PbrMaterialAsset
 string ColorTexture
 string ColorTint

 For example: "#FF00A0"
 bool ColorIsSRGB
 string EmissiveTexture
 string EmissiveColor

 For example: "#FF00A0"
 double EmissiveIntensity
 string NormalTexture
 string RoughnessTexture
 double RoughnessFactor
 string MetallicTexture
 double MetallicFactor

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 25

 string AmbientOcclusionTexture
 string HeightTexture
 double HeightDepth
 string EnvironmentTexture
 double EnvironmentRotation
 double TillingU
 double TillingV
 double UvAngle
 double UvScaleU
 double UvScaleV
 double UvOffsetU
 double UvOffsetV

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 26

4 Classes
 Scripting
 Profile
 Control Object

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 27

4.1 Scripting
This section covers the following topics:

 General
 Action
 Playlist
 Control Object
 MIDI
 Art-Net DMX
 MQTT
 RabbitMQ
 Object Tracker
 Viz Arena
 Parameter
 Channel
 Viz Engine/Unreal Engine Communication

 Viz Engine Communication
 Tracking Hub Command
 SMM Handling
 GPI
 Viz Pilot
 Timer

 JavaScript Timer Functions
 Overview
 setTimeout
 clearTimeout
 setInterval
 clearInterval
 Best Practices
 Complete Example - Countdown Timer
 Performance Considerations
 Recommended Intervals
 Best Practices
 Quick Checklist
 Notes

 StreamDeck
 Graphic Hub REST
 DataMap
 NDI
 File Handling
 Logging
 JSON
 Excel
 Callbacks

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 28

 Exposed Objects
 Console
 MessageBox
 XmlDocument
 XMLHttpRequest

 Prevent Caching
 xlAppType
 FSO

 xHost
 Performance
 Garbage Collection
 SQL Sample
 SQLite Sample
 TcpSend
 HtmlAgility Example
 Main Script-only

 Canvas Tabs Handling
 Action Template Handling
 Callbacks

 Template Script-only
 Action/Designer Handling

 Properties
 Control Object Handling
 Template Channels Handling
 ScriptingChannel
 Template Scene Handling
 Template Action Configuration
 Callbacks

 Sample Usage of Object Tracker Script API
 Common Callbacks
 Parameters

 Base Parameters Functionality
 Layout

 Panel
 Tabs
 Info
 Label
 TextColor

 Dialogs
 Color
 DateTime
 Directory
 File
 Asset
 WebView

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 29

 Bool
 Button
 Toggle Button
 Double / Double Slider
 Dropdown / Radio
 Int / Int Slider
 MultiText / Text
 Triplet
 Table

 Table Parameter Example
 Unreal
 Flowics

 Overview
 Available Methods
 Examples

 Basic Overlay Control
 Multiple Overlays
 Set Overlay State
 Batch State Changes
 Show/Hide All
 ToggleButton Integration

 Video
 Using async/await

 Using try/catch

4.1.1 General
Viz Arc's scripting has many classes and types that are exposed and accessible via code. The script's main class is
called arc and it exposes all the functions that are capable of interacting with the remaining parts of Viz Arc as well
as many helper functions. All of arc's functions can be accessed via scripting by calling them directly, since they are
all exposed directly to the global script, or via the arc keyword.

The following samples and codes snippets are all written using the V8 JavaScript syntax:

Accessing Viz Arc Functions

// Getting a reference to an action called VersusTemplate
var versus = arc.GetAction("VersusTemplate")
var versus = GetAction("VersusTemplate")

Note: You can also find this section in Viz Arc by selecting the Help button in the script section when
in edit mode.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 30

4.1.2 Action
All actions in the current project can be accessed using the GetAction method, whose content can be manipulated.
See Action Properties for more details.

 BaseAction GetAction (string actionNameOrGUID)
 Returns the first action found with the name provided. When a valid GUID is provided as a string, it

returns the action found with the provided GUID.
 BaseAction GetAction (string actionName, string tabName)

 Returns the first action found with the name provided inside the action tab named tabName.
 BaseAction GetActionByName (string actionName)

 Returns the first action found with the name provided.
 BaseAction GetActionByName (string actionName, string tabName)

 Returns the first action found with the name provided inside the action tab named tabName.
 BaseAction GetActionByUUID (Guid actionUUID)

 Returns the first action found with the provided GUID.
 BaseAction[] GetSelectedActions ()

 Returns an array containing all the actions that are selected on the action canvas
 BaseAction[] GetActionsOfTab (string tabName, string actionType = "ALL")

 Returns an array with all the actions inside the tab named tabName of type equal to the one provided
in actionType input. Default value ("ALL") includes all actions found.

 BaseAction[] GetActions (string actionType = "ALL")
 Returns an array with all the actions of the entire project of type equal to the one provided in

actionType input. Default value ("ALL") includes all actions.
 BaseAction GetChildAction (string nameOrUUID)

 Returns an action within the group, and only works on Group Actions.

GetAction Example

// Getting a reference to an action explicitly by its name "VersusTemplate"
var versus = GetActionByName("VersusTemplate")

// Getting a reference using a GUID
var versus = GetAction("e87a8031-a86b-4997-a169-c6f791920449")

// Getting a reference to an action called VersusTemplate
var versus = GetAction("VersusTemplate")

// Getting all NDI actions
var nidActions = GetActions("NDI")

// get the action "PrecisionKeyer" within the "INITIALIZE" group action
var chromaAction = GetAction("INITIALIZE").GetChildAction("PrecisionKeyer")

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 31

4.1.3 Playlist
arc provides an alternative way of getting a BaseControlObject from a ControlObject/Blueprint action.

 void ExecuteSelectedPlaylistRow ()
 Executes the selected row on the playlist.

 void ExecuteSelectedPlaylistRowAndNext ()
 Executes the selected row on the playlist and changes selection to the next row.

 void PreviewSelectedPlaylistRow ()
 Previews the selected row on the playlist.

 BaseAction GetSelectedPlaylistRowAction ()
 Returns the action that's attached to the selected row on the playlist.

 void SetSelectedPlaylistRow (params string[] path)
 Tries to find the row at path (path should contain a string per depth level) and makes it the selected

row.
 void PlayPlaylistByName (string tabName)

 Highlights the playlist with the name tabName, and plays it from the beginning.
 void PlayPlaylistByIndex (int tabIndex)

 Highlights the playlist with 0-based index tabIndex, and plays it from the beginning.
 void StopPlaylist ()

 Stops the currently playing playlist.
 void ChangePlaylistTab (string tabName)

 Selects and highlights the playlist with the name tabName.

Playlist Example

// Selects the row at "StatsDisplayGroup/AwayTeam/Show" and then previews and
executes it.
SetSelectedPlaylistRow("StatsDisplayGroup", "AwayTeam", "Show")
PreviewSelectedPlaylistRow()
ExecuteSelectedPlaylistRowAndNext()

4.1.4 Control Object
arc provides an alternative way of getting a BaseControlObject from a ControlObject/Blueprint action.

 BaseControlObject GetControlObject (ControlObjectAction action, string id)
 Returns the control object with a specific ID from ControlObject action.

Getting a Specific ControlObject from a ControlObjectAction

// Get the ControlObject Action
var MatchDayAction = GetAction("MatchdayTable")
// Get Title ControlObject (ControlText) and change its value

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 32

GetControlObject(Co, "Title").Value = "Sunday Fixtures"

// Get the Blueprint Action
var HeadlineBp = GetAction("HeadlineBp")
// Get Title ControlObject (String Variable) and change its value
GetControlObject(HeadlineBp, "Title").Value = "Lorem Ipsum"

4.1.5 MIDI
Attached and configured MIDI devices can be used to receive MIDI events using the OnMIDIEvent callback. It's also
possible to send MIDI events to an attached device using the following methods:

 bool SendMIDIControlMessage (string DeviceName, int Channel, int Number, int Value)
 Sends a MIDI control message to a the device named DeviceName, using Channel, Number and Value.

 bool SendMIDINoteMessage (string DeviceName, bool On, int Channel, int Note, int Velocity)
 Sends a MIDI note message to a the device named DeviceName, using Channel, Note and Velocity.

The parameter On determines whether the event is a note on or note off event.

MIDI Sample

Global.OnButtonPressed = function (id)
{
 SendMIDIControlMessage("Midi Fighter Twister", 1, 1, 127) // send control message
to Midi Fighter Twister on channel 1, number 1, value 127
 SendMIDINoteMessage("nanoPAD2", true, 1, 5, 100) // send note down event to
nanoPAD2 device
}

Global.OnMIDIEvent = function (midiEvent)
{
 // just print the midi event on the console
 Console.WriteLine("midi event |" + midiEvent.DeviceName + "| " +
midiEvent.EventType + "\n" + midiEvent.ToString())
}

4.1.6 Art-Net DMX
A sample on how to use the OnDMXEvent callback in a template or global script.

Art-Net Script Sample

Global.OnDMXEvent = function (dmxEvent)

Note: Both of the methods above return true on successful completion and false if not successful.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 33

{
 Console.WriteLine("Universe " + dmxEvent.Universe + " first change at channel " +
dmxEvent.firstDiff)
 Console.WriteLine("Channel 7 has changed: " + dmxEvent.HasChanged(7))
 Console.WriteLine("Channel 7 value is: " + dmxEvent.DMXData[7])
}

You can enable or disable the DMX signals using the following methods

 void EnableDMX ()
Enables callbacks of the connected Art-Net devices to be sent to connected actions and script callbacks.

 void DisableDMX ()
Disables callbacks of the connected Art-Net devices to be sent to connected actions and script callbacks.

 bool IsDMXEnabled ()
Returns whether the Art-Net callbacks are enabled.

4.1.7 MQTT
Message Queuing Telemetry Transport is supported through the possibility to instantiate a MQTT client and send/
receive messages

 ArcMqttClient createMQTTClient (string server, int port)
Creates a MQTT client connected using server and port

The returned client ArcMqttClient supports the following methods

 void Subscribe (string topic, int qos = 1)
Subscribes the client to the given topic with the specified quality of service (default 1).

 void Unsubscribe (string topic)
Unsubscribes the client from the given topic.

 void sendMessage (string topic, string payload)
Sends a message payloadto topic.

 void Dispose ()
Disconnects and deletes the client.

Whenever a message is received from a topic a client has subscribed to, the new data is set to the global DataMap
using the topic as key and the payload as value. Payload data in JSON format is passed as a JSON object, anything
else is passed as a string object.

MQTT Sample

var mqttClient

Global.OnInit = function ()
{
 mqttClient = createMQTTClient("localhost", 6548)
 mqttClient.Subscribe("hello/world/news")

 SubscribeDataMap("hello/world/news")
}

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 34

Global.OnDataMapValueChanged = function (varName)
{
 if(varName == "hello/world/news")
 Console.WriteLine("breaking news alert: " + GetData(varName))
}

A sample server written in C# illustrating the server side code using the MQTTnet library.

MQTT Server Sample

using MQTTnet;
using MQTTnet.Extensions.ManagedClient;
using MQTTnet.Server;
using System;
using System.Threading;

namespace testmqtt
{
 class Program
 {
 static void Main(string[] args)
 {
 var optionsBuilder = new MqttServerOptionsBuilder()
 .WithConnectionBacklog(100)
 .WithDefaultEndpointPort(6548);

 var mqttServer = new MqttFactory().CreateMqttServer();
 mqttServer.StartAsync(optionsBuilder.Build());

 int i = 0;
 MqttApplicationMessage message = null;
 while (true)
 {
 message = new MqttApplicationMessageBuilder()
 .WithTopic("hello/world/news")
 .WithPayload("Temperatures below " + i + " !")
 .WithExactlyOnceQoS()
 .Build();

 mqttServer.PublishAsync(message);
 Thread.Sleep(1000);
 Console.WriteLine(i + "");
 i--;
 }
 }
 }
}

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 35

4.1.8 RabbitMQ
RabbitMQ is an open-source message broker that enables Viz Arc and other applications to communicate
asynchronously by sending and receiving messages through queues.

Create a client

 ArcRabbitMqClient createRabbitMQClient(string host, int port = 5672, string username = ‘guest’, string
password = ‘guest’, string virtualHost = '/')
Creates a RabbitMQ client connecting to host on port using credentials username and password while
virtualHost is the virtual host of the broker instance.

The following methods are support on an instance of ArcRabbitMqClient:

 void DeclareQueue(string queueName, bool durable = false, bool exclusive = false, bool autoDelete = false)
 Creates queue if it doesn't exist.

 void ConsumeQueue(string queueName, bool autoAck = true, bool declareQueue = true)
 Starts consuming. Messages are pushed to the DataMap with queueName as key.

 void StopConsuming(string queueName)
 Stops consuming from the specified queue.

 void PublishToQueue(string queueName, string message)
 Publishes message directly to a queue.

 void Publish(string exchange, string routingKey, string message)
 Publishes to an exchange with routing key.

 void Dispose()
 Closes connection and releases resources.

Example usage:

var rmqClient = null;
var QUEUE_NAME = "vizarc_demo_queue";

Global.OnCreated = function() {
 // Create RabbitMQ client - connects to localhost with default credentials
 // Parameters: host, port (default 5672), username (default "guest"),
 // password (default "guest"), virtualHost (default "/")
 rmqClient = createRabbitMQClient("localhost", 5672, "guest", "guest", "/");

 // Declare and start consuming from a queue
 // Messages will be pushed to the DataMap with queue name as the key
 rmqClient.ConsumeQueue(QUEUE_NAME);

 // Subscribe to DataMap to receive messages
 SubscribeDataMap(QUEUE_NAME);

 Console.WriteLine("RabbitMQ client connected and consuming from: " + QUEUE_NAME);
}

Global.OnDestroyed = function() {
 // Clean up when script stops

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 36

 if (rmqClient != null) {
 rmqClient.StopConsuming(QUEUE_NAME);
 rmqClient.Dispose();
 rmqClient = null;
 }
 Console.WriteLine("RabbitMQ client disconnected");
}

// Called when DataMap variable changes (message received)
Global.OnDataMapValueChanged = function(varName) {
 if (varName === QUEUE_NAME) {
 var message = GetData(QUEUE_NAME);
 Console.WriteLine("Received message: " + message);

 // Process the message here
 processMessage(message);
 }
}

function processMessage(message) {
 // Example: Parse JSON message and update a parameter
 try {
 var data = JSON.parse(message);
 if (data.action === "update") {
 SetParameterValue("myTextParam", data.value);
 }
 } catch (e) {
 Console.WriteLine("Message is not JSON: " + message);
 }
}

// Button click handler to publish a test message
Global.OnButtonPressed = function(param) {
 if (param === "btnPublish") {
 var testMessage = JSON.stringify({
 action: "update",
 value: "Hello from VizArc!",
 timestamp: new Date().toISOString()
 });

 // Publish to queue (uses default exchange with queue name as routing key)
 rmqClient.PublishToQueue(QUEUE_NAME, testMessage);
 Console.WriteLine("Published: " + testMessage);
 }
}

4.1.9 Object Tracker
The script exposes some useful functions that allows customization and remoting of the Object Tracker. For
example, the StopTracker and TakeOutTracker function could be used to quickly remove tracking or On Air
graphics.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 37

 int GetActiveTracker ()
 Gets the currently active tracker index (starting from 1).

 int SetActiveTracker (int tracker)
 Sets the currently active tracker index (starting from 1). Returns the active tracker index.

 void TakeTracker ()
 Takes tracker On Air all trackers.

 void TakeOutTracker ()
 Takes tracker Off Air all trackers.

 void PreviewTracker ()
 Previews all trackers.

 void PreviewOutTracker ()
 Removes all trackers from preview.

 void StopTracker ()
 Stops all trackers.

 void StopTracker (int index)
 Stops the tracker with index (starting from 1).

 void ResetPointerOffset(int index)
 Reset the pointer offset for tracker with index (starting from 1).

4.1.10 Viz Arena
The script exposes some useful functions concerning the Viz Arena integration.

 bool DetectArenaCalibration ()
 Redetects the camera calibration (same as the D shortcut in Viz Arena).

 bool ClearArenaCalibration ()
 Clears the camera calibration (same as the BACKSPACE shortcut in Viz Arena).

 bool ClearArenaKeyer ()
 Clears the Keyer mask (same as the C shortcut in Viz Arena).

 string[] GetArenaCameraList ()
 Returns a string-list of available cameras.

 string GetCurrentArenaCamera ()
 Returns the name of the current camera.

 int GetCurrentArenaCameraIndex ()
 Returns the zero based index of the current camera.

 bool IsArenaConnected ()
 Returns whether Viz Arena is running and connected to Viz Arc.

4.1.11 Parameter
All parameters are exposed to the global script and can be accessed via their unique ID.

arc provides an alternative way of getting them.

 BaseParameter GetParameter (string id)
 Gets the parameter identified by the unique id that was input.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 38

It's also possible to get and set a parameter's value directly from arc.

 dynamic GetParameterValue (string id)
 Gets the value of the parameter identified by the unique id that was input. [dynamic] The returned

value's type depends on the parameter type.
 void SetParameterValue (string id, dynamic value)

 Sets the value of the parameter identified by the unique id that was input. [dynamic] Input variable
value can be of any type, see parameters for valid types.

In case you don't want the callback function OnParameterChanged to be triggered when changing a value using
SetParameterValue, you can use SetParameterRawValue. This method does not trigger any calls
to OnParameterChanged.

 void SetParameterRawValue (string id, dynamic value)
 Sets the value of the parameter identified by the unique id that was input. [dynamic] Input variable

value can be of any type, see parameters for valid types.

Buttons are a special case in the sense that they don't hold a value, and therefore have a separate method for
triggering their click.

 void PushParameterButton (string id)
 Triggers a pressed event on the button identified by the unique id that was input.

Parameter Examples

// Setting the value of a bool parameter (id = ShowHighlights) to false
// direct assigment
ShowHighlights.Value = false
// Get parameter via arc and then assign to Value
GetParameter("ShowHighlights").Value = false
// Set Parameter value via arc without interacting with the actual parameter
SetParameterValue("ShowHighlights", false)

// Getting the value of a bool parameter (id = ShowHighlights)
var highlightState = GetParameterValue("ShowHighlights")

// Push LoadFixtures button
PushParameterButton("LoadFixtures")

4.1.12 Channel
arc grants access to Viz Arc profiles. This is useful whenever more precise control is required for communicating
with the Engines.

 ScriptingProfile GetSelectedProfile ()

Note: Button presses trigger the global script's callback OnButtonPressed.

Note: Parameter value changes trigger the global script's callback OnParameterChanged.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 39

 Returns the currently selected profile.
 int GetChannelCount ()

 Returns the number of channels on the currently selected profile.
 ScriptingChannel GetChannel (int index)

 Returns the channel at the index position on the currently selected profile.
 ScriptingChannel GetChannel (string channelName)

 Returns the channel named channelName on the currently selected profile.
 ScriptingChannel GetPreviewChannel ()

 Returns the preview channel of the currently selected profile.
 ScriptingChannel GetProgramChannel ()

 Returns the program channel of the currently selected profile.
 ScriptingChannel GetSelectedChannel ()

 In a template script it returns the currently selected channel of the Template Action.
In the global script it returns the program channel of the currently selected profile.

Channel Handling Examples

// Clear main layer on all channels using GetChannelCount() and GetChannel(int)
for (var i = 0; i < GetChannelCount(); i++) {
 GetChannel(i).SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT")
}

// Send message to VideoWallchannel via GetSelectedProfile () and GetChannel(string)
GetChannel("VideoWall").SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT")
GetSelectedProfile().GetChannel("VideoWall").SendSingleCommand("RENDERER*MAIN_LAYER
SET_OBJECT")

4.1.13 Viz Engine/Unreal Engine Communication
arc provides quick access functions for sending messages to specific channels/Engines.

 void SendSingleCommand (string command, string channelName)
 Sends command to all the Engines in the specified channel channelName.

 void SendMultipleCommands (string[] commands, string channelName)
 Sends all the input commands to all the Engines in the specified channel channelName.

 string GetFromEngine (string command, string channelName)
 Sends command to all the Engines in the specified channel channelName. Returns the answer to the

sent command.
 string GetFromVizEngine (string command)

 Sends command to the currently selected profile's Viz editing Engine. Returns the answer to the sent
command.

 string GetFromUnrealEngine (string command)
 Sends command to the currently selected profile's Unreal editing Engine. Returns the answer to the

sent command.
 string GetFromEngineAsync (string command, string channelName, int timeout = -1)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 40

 Sends command to all the Engines in the specified channel channelName. Returns the answer to the
sent command.
If timeout is specified and larger than 0, the method times out after timeout milliseconds if it does not
receive an answer within that time.

 string GetFromEngineAsync (string command, int timeout = -1)
 Sends command to all the Engines in the specified selected channel of the template. Returns the

answer to the sent command.
If timeout is specified and larger than 0, the method times out after timeout milliseconds if it does not
receive an answer within that time.

 string GetFromVizEngineAsync (string command)
 Sends command to the currently selected profile's Viz editing Engine. Returns the answer to the sent

command.
 string GetFromUnrealEngineAsync (string command)

 Sends command to the currently selected profile's Unreal editing Engine. Returns the answer to the
sent command.

Viz Engine Communication

// Get scene from parameter and set it to Viz Engine main layer
SendSingleCommand(GetParameterValue("MainSceneSelector"), "Main")

// Clear Main, Back and Front layers on channel
var CleanCommands = ["RENDERER*MAIN_LAYER SET_OBJECT", "RENDERER*BACK_LAYER
SET_OBJECT", "RENDERER*FRONT_LAYER SET_OBJECT"]
SendMultipleCommands(CleanCommands, "Viz")

// Query Viz channel and Viz editing engine for the currently loaded scene
GetFromEngine("SCENE SCENE*SCENE GET", "Viz")
GetFromVizEngine("SCENE SCENE*SCENE GET")

The async variants can be used only when using the JavaScript language and have the advantage that they do not
lock up the UI.

Async Samples

Global.OnButtonPressed = async function (id)
{
 if(id == "getVersionButton"){
 const answer = await GetFromEngineAsync("VERSION", "localviz")
 Console.WriteLine("Viz Version is: " + answer)
 }
}

Note: If you use await, the enclosing function needs to be async. You can add this attribute manually in
case you use it within a Viz Arc callback.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 41

4.1.14 Tracking Hub Command
arc provides quick access functions for sending messages to the configured Tracking Hub.

 void SendSingleTHCommand (string command)
 Sends command to the Tracking Hub (if configured and connected).

 string GetFromTH (string command)
 Sends command to the Tracking Hub (if configured and connected) and returns the answer.

 string GetFromTHAsync (string command)
 The asynchronous version of GetFromTH.

4.1.15 SMM Handling
 void SendToSMM (string key, string value, bool doEscape)

 Sends key-value pair to Shared Memory to the first channel of the current profile. doEscape specifies
whether the value string is escaped.

 void SendToSMM (string key, string value, bool doEscape, string channel)
 Sends key-value pair to Shared Memory to all Engines contains in channel. doEscape specifies

whether the value string is escaped.
 void SendToSMM (string key, string value, bool doEscape, string channel, string destination)

 Sends key-value pair to Shared Memory to all Engines contains in channel. doEscape specifies
whether the value string is escaped.

 destination can be either SYSTEM, COMMUNICATION or DISTRIBUTED

The shared memory updates are sent to the UDP or TCP port configured on the target Viz Engine; if both are
configured, it is sent to the UDP port. The Viz Communication Shared Memory map is therefore utilized. You can
read more on Shared Memory configuration in the Profiles section in the Viz Arc User Guide.

SMM Example

// Send to Viz Channel SMM the variable "Target1" with the value from TargetState
SendToSMM("Target1", TargetState.Value, false, "Viz")

// Send to Viz Channel SMM the variable "Target2" with the value "Hello World!".
// The last parameter "DISTRIBUTED" indicates that the value will be propagated to
all engines connected to the same Graphic Hub
SendToSMM("Target2", "Hello World!", false, "Viz", "DISTRIBUTED")

4.1.16 GPI
The connected GPI state can be changed via the arc functionalities:

 void SignalGpiChannel (int channelIndex, bool signalHigh)
 Signals set the GPI channel at channelIndex to either high or low.

The following snippet presents a function that loads a scene to the "Main" channel and signals the GPI:

http://documentation.vizrt.com/viz-arc

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 42

GetAction Example

function LoadScene()
{
 // Get scene from parameter and set it to Viz Engine main layer
 SendSingleCommand(GetParameterValue("MainSceneSelector"), "Main")
 // Set gpi channel 2 to High
 SignalGpiChannel(2, true)
}

4.1.17 Viz Pilot
Viz Pilot data elements can be created from scripting using the method CreatePilotDataElement. There are two ways
to invoke this method:

 async bool CreatePilotDataElement (BaseAction action, string name)
 Creates a Viz Pilot data element of action and name name. The function returns true on success.

 The BaseAction method:
 async bool CreatePilotDataElement (string name)

 Creates a Viz Pilot data element with name name. The function returns true on success.

Global.OnButtonPressed = async function (id)
{
 try{
 if(id == "createpilotButton")
 {
 // use global method
 await CreatePilotDataElement(GetAction("loadSceneA"), "LoadSceneA")
 // use method defined on the BaseAction itself
 await
GetAction("loadSceneA").CreatePilotDataElement("LoadSceneA_fromAction")
 }
 }catch(ex)
 {
 // error handle
 Console.WriteLine("ex " + ex + " " + ex.stack)
 }
}

4.1.18 Timer
 void CreateTimer (string id)

 Creates a timer that can be accessed via its unique id.

Note: GPI must be enabled on the config.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 43

 void CreateTimer (string id, int ms)
 Starts a timer that can be accessed via its unique id and has a tick interval of ms.

 void StartTimer (string id, int ms)
 Gets the timer identified by id, sets the tick interval to ms and starts it.

 void StopTimer (string id)
 Gets the timer identified by id and stops it.

The following example creates a timer on the OnInit callback, makes use of two buttons to start/stop the timer and
writes to the console whenever the timer ticks:

Timer Example

// Timer id
var heartBeatTimerId = "HeartBeat"

Global.OnInit = function ()
{
 // Create timer with id heartBeatTimerId
 CreateTimer(heartBeatTimerId)
}

Global.OnButtonPressed = function (id)
{
 if(id == "TimerStart")
 StartTimer(heartBeatTimerId, 1000)
 else if(id == "TimerStop")
 StopTimer(heartBeatTimerId)
}

// Script callback for timer ticks
Global.OnTimer = function (id)
{
 Console.WriteLine("Timer Tick " + id)
}

JavaScript Timer Functions
Viz Arc provides browser-style timer functions that allow you to execute code after a delay or at regular intervals.
These functions mimic the standard JavaScript timer API found in web browsers, making it familiar for developers
with web development experience.

Overview
The timer functions allow you to:

 Execute code once after a specified delay (setTimeout).

Note: Whenever a timer ticks the global script's callback OnTimer is called.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 44

 Execute code repeatedly at fixed intervals (setInterval).

 Cancel pending or repeating timers (clearTimeout , clearInterval).

All timer functions return a unique timer ID that can be used to cancel the timer before it executes.

setTimeout
Executes a function once after a specified delay.

Syntax:

int setTimeout(function callback, int delay)

Parameters:

 callback : The function to execute after the delay

 delay : Time in milliseconds to wait before executing the function

Returns:

 int : A unique timer ID that can be used with clearTimeout()

Example - Basic Usage:

Global.OnButtonPressed = function (id)
{
 if (id == "delayedAction")
 {
 Console.WriteLine("Action will execute in 3 seconds...")
 setTimeout(function() {
 Console.WriteLine("3 seconds have passed!")
 SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT Scene1", "Main")
 }, 3000)
 }
}

Example - Using Named Functions:

function showGraphic()
{
 Console.WriteLine("Displaying graphic")
 GetSelectedChannel().SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT
SCENE*some/scene/l3rd")
 SetData("lastUpdate", Date().toString())
}

Global.OnButtonPressed = function (id)
{
 if (id == "delayShow")
 {

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 45

 setTimeout(showGraphic, 5000) // Show graphic after 5 seconds
 }
}

Example - Storing Timer ID for Cancellation:

var pendingTimerId = null

Global.OnButtonPressed = function (id)
{
 if (id == "scheduleUpdate")
 {
 // Schedule an update for 10 seconds from now
 pendingTimerId = setTimeout(function() {
 Console.WriteLine("Executing scheduled update")
 GetParameter("StatusText").Value = "Updated"
 }, 10000)

 Console.WriteLine("Update scheduled with timer ID: " + pendingTimerId)
 }
 else if (id == "cancelUpdate")
 {
 if (pendingTimerId != null)
 {
 clearTimeout(pendingTimerId)
 Console.WriteLine("Scheduled update cancelled")
 pendingTimerId = null
 }
 }
}

clearTimeout

Cancels a timer created with setTimeout before it executes.

Syntax:

void clearTimeout(int timerId)

Parameters:

 timerId : The timer ID returned by setTimeout()

Example - Cancelling a Scheduled Action:

var countdownTimer = null

function startCountdown()
{

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 46

 Console.WriteLine("Graphics will load in 10 seconds...")
 countdownTimer = setTimeout(function() {
 GetSelectedChannel().SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT
SCENE*Countdown")
 Console.WriteLine("Graphics set!")
 }, 10000)
}

function cancelCountdown()
{
 if (countdownTimer != null)
 {
 clearTimeout(countdownTimer)
 Console.WriteLine("Countdown cancelled")
 countdownTimer = null
 }
}

Global.OnButtonPressed = function (id)
{
 if (id == "btnStart")
 startCountdown()
 else if (id == "btnCancel")
 cancelCountdown()
}

setInterval
Executes a function repeatedly at a fixed time interval until cancelled.

Syntax:

int setInterval(function callback, int interval)

Parameters:

 callback : The function to execute repeatedly.

 interval : Time in milliseconds between each execution.

Returns:

 int : A unique interval ID that can be used with clearInterval() .

Example - Updating a Clock:

var clockIntervalId = null

function updateClock()
{
 var currentTime = new Date().toLocaleTimeString()
 SetParameterValue("ClockDisplay", currentTime)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 47

 SetData("currentTime", currentTime)
}

Global.OnButtonPressed = function (id)
{
 if (id == "startClock")
 {
 // Update clock every second
 clockIntervalId = setInterval(updateClock, 1000)
 Console.WriteLine("Clock started")
 }
 else if (id == "stopClock")
 {
 if (clockIntervalId != null)
 {
 clearInterval(clockIntervalId)
 Console.WriteLine("Clock stopped")
 clockIntervalId = null
 }
 }
}

Example - Periodic Status Check:

var statusCheckId = null

function checkEngineStatus()
{
 var version = GetFromEngine("VERSION", "Main")
 Console.WriteLine("Engine Status Check: " + version)

 // Update status display
 SetParameterValue("EngineStatus", "Online - " + version)
}

Global.OnCreated = function()
{
 // Check engine status every 30 seconds
 statusCheckId = setInterval(checkEngineStatus, 3000)
}

Example - Animation Loop:

var animationId = null
var counter = 0

function animateCounter()
{
 counter++
 SetParameterValue("CounterValue", counter)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 48

 // Stop after reaching 100
 if (counter >= 100)
 {
 clearInterval(animationId)
 Console.WriteLine("Animation complete")
 animationId = null
 }
}

Global.OnButtonPressed = function (id)
{
 if (id == "startAnimation")
 {
 counter = 0
 animationId = setInterval(animateCounter, 50) // Update every 50ms
 }
}

clearInterval

Cancels a repeating timer created with setInterval .

Syntax:

void clearInterval(int intervalId)

Parameters:

 intervalId : The interval ID returned by setInterval()

Example - Starting and Stopping a Refresh Loop:

var refreshId = null

function refreshData()
{
 Console.WriteLine("Refreshing data from API...")
 // Fetch and update data here
 var timestamp = Date().toString()
 SetData("lastRefresh", timestamp)
}

Global.OnButtonPressed = function (id)
{
 if (id == "btnStartRefresh")
 {
 if (refreshId == null)
 {
 refreshData() // Execute immediately
 refreshId = setInterval(refreshData, 5000) // Then every 5 seconds
 Console.WriteLine("Auto-refresh enabled")

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 49

 }
 }
 else if (id == "btnStopRefresh")
 {
 if (refreshId != null)
 {
 clearInterval(refreshId)
 refreshId = null
 Console.WriteLine("Auto-refresh disabled")
 }
 }
}

Best Practices
1. Always Store Timer IDs

// Good - can be cancelled later
var timerId = setTimeout(myFunction, 1000)

// Avoid - cannot be cancelled
setTimeout(myFunction, 1000)

2. Avoid Memory Leaks

var updateInterval = null

Global.OnButtonPressed = function (id)
{
 if (id == "startUpdates")
 {
 // Clear existing interval before creating a new one
 if (updateInterval != null)
 clearInterval(updateInterval)

 updateInterval = setInterval(updateFunction, 1000)
 }
}

3. Handle Long-Running Intervals

var pollCount = 0
var pollId = null

function pollAPI()
{
 pollCount++

 // Implement a maximum number of attempts

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 50

 if (pollCount > 100)
 {
 clearInterval(pollId)
 Console.WriteLine("Polling stopped after 100 attempts")
 return
 }

 // Your polling logic here
 Console.WriteLine("Polling... attempt " + pollCount)
}

pollId = setInterval(pollAPI, 100)

Complete Example - Countdown Timer

var countdownValue = 10
var countdownId = null

function countdown()
{
 if (countdownValue > 0)
 {
 SetParameterValue("CountdownDisplay", countdownValue.toString())
 Console.WriteLine("Countdown: " + countdownValue)
 countdownValue--
 }
 else
 {
 // Countdown finished
 clearInterval(countdownId)
 countdownId = null

 SetParameterValue("CountdownDisplay", "GO!")
 Console.WriteLine("Countdown complete!")

 // Execute action after countdown
 SendSingleCommand("RENDERER*MAIN_LAYER SET_OBJECT LaunchGraphic", "Main")
 }
}

Global.OnButtonPressed = function (id)
{
 if (id == "btnStartCountdown")
 {
 countdownValue = 10
 countdown() // Show initial value immediately
 countdownId = setInterval(countdown, 1000) // Then update every second
 }
 else if (id == "btnStopCountdown")
 {
 if (countdownId != null)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 51

 {
 clearInterval(countdownId)
 countdownId = null
 Console.WriteLine("Countdown stopped")
 }
 }
 else if (id == "btnResetCountdown")
 {
 if (countdownId != null)
 {
 clearInterval(countdownId)
 countdownId = null
 }
 countdownValue = 10
 SetParameterValue("CountdownDisplay", countdownValue.toString())
 }
}

Performance Considerations

Recommended Intervals

// BAD
setInterval(heavyOperation, 10)

// GOOD
setInterval(lightUpdate, 100) // Light: 100ms minimum
setInterval(apiCall, 1000) // Heavy: 1 second minimum
setInterval(polling, 5000) // Polling: 5+ seconds

Best Practices
Limit Active Timers (< 15 per template)

// Multiple timers
for (var i = 0; i < 10; i++) setInterval(update, 1000)

// Single timer
var i = 0
setInterval(function() { update(i++ % 10) }, 1000)

Use setTimeout for Slow Operations

// Overlapping calls

Warning: Too many timers or short intervals can cause UI freezing and performance issues.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 52

setInterval(slowAPICall, 2000) // Takes 3 seconds!

// Wait for completion
function poll() {
 slowAPICall()
 setTimeout(poll, 2000)
}

Quick Checklist

 Intervals ≥ 100ms (1000ms+ for heavy operations)
 Keep total timers under 15
 Callbacks faster than interval duration

Notes

 These functions mimic the standard JavaScript timer API found in web browsers, making them familiar to
web developers

 All timers are automatically cleaned up when the script is stopped or reloaded
 Timer callbacks are executed on the UI thread for safe interaction with Viz Arc parameters and UI elements
 Delays and intervals are specified in milliseconds (1000ms = 1 second)
 If an error occurs in a setInterval callback, the interval is automatically stopped to prevent repeated

errors

4.1.19 StreamDeck
Any connected StreamDeck that is configured to be used exclusively with arc, can have its buttons customized
using one of the following methods:

 void SetStreamdeckKey (int key, string label, int fontSize)
 Baseline version, sets streamdeck key at key index image to a black square with label text of fontSize

size.
 void SetStreamdeckKey (int key, string label, int fontSize, string imageFullPath)

 Same as the baseline version but instead of a black block it sets a local image (at imageFullPath) as
background. imageFullPath can be either a local file system path or a Graphic Hub path.

 void SetStreamdeckKey (int key, string label, int fontSize, int r, int g, int b)
 Same as the baseline version but instead of black it uses an RGB color as background.

 void SetStreamdeckKey (int key, string label, int fontSize, int r, int g, int b, string imageName)
 Same as baseline version using background color r, g, b and imageName on top of the background

color (in case the image contains an alpha channel).
 void SetStreamdeckKey (int key, string label, int fontSize, string horAlignment, string vertAlignment, string

textAlignment, int r, int g, int b, string imageName)
 Same as the previous version, where text is horAlignment aligned horizontally, vertically

by vertAlignment and the text itself is centerd through textAlignment.
 horAlignment can be either "Left", "Center" or "Right"
 vertAlignment can be either "Top", "Center" or "Bottom"

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 53

 textAlignment can be either "Left", "Center" or "Right"

Any key can have its contents cleared with the following method:

 void ClearStreamdeckKey (int key)
 Clears the content of the Streamdeck key at key index

StreamDeck Key Configuration Example

function SetupStreamDeck()
{
 // Key 0: Black background, size 20 "Clear" text
 SetStreamdeckKey(0, "Clear", 20)
 // Key 1: Image background, size 20 "Load AR" text
 SetStreamdeckKey(1, "Load AR", 20, "D:/Soccer/Images/ARThumbnail.png")
 // Key 2: Blue background, size 20 "Continue" text
 SetStreamdeckKey(2, "Continue", 20, 0, 0, 255)
 // Key 3: Gray background, using headshot from Graphic Hub (image may contain an
alpha channel)
 SetStreamdeckKey(3, " ", 20, 100, 100, 100, "IMAGE*/Default/MasterImages/
headshot_0123")
 // Key 4: Gray background, using headshot from Graphic Hub (image may contain an
alpha channel), Text "John Doe" is top left aligned
 SetStreamdeckKey(4, "John Doe", 20, "Left", "Top", "Left", 100, 100, 100,
"IMAGE*/Default/MasterImages/headshot_0123")
}

Global.OnInit = function () {
 // Clean first 3 keys
 ClearStreamdeckKey(0)
 ClearStreamdeckKey(1)
 ClearStreamdeckKey(2)

 SetupStreamDeck()
}

Another sample that prints some useful information using the external StreamDeck plugin.

function printSDEvenyInfo(sdEvent)
{
 // print all the available information for a StreamDeck event
 Console.WriteLine("StreamDeck Event Info:")
 Console.WriteLine("Event Type: " + sdEvent.EventType)
 Console.WriteLine("Device Index: " + sdEvent.DeviceIndex)
 Console.WriteLine("Device ID: " + sdEvent.Id)
 Console.WriteLine("Column: " + sdEvent.XKey)
 Console.WriteLine("Row: " + sdEvent.YKey)
 Console.WriteLine("Payload: " + sdEvent.Payload)

 // if it's a dial or touch event print additional info

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 54

 // for StreamDeck + devices only
 if(sdEvent.hasOwnProperty("Ticks"))
 Console.WriteLine("Ticks: " + sdEvent.Ticks)
 if(sdEvent.hasOwnProperty("TapPosX"))
 Console.WriteLine("TapPosX: " + sdEvent.TapPosX)
 if(sdEvent.hasOwnProperty("TapPosY"))
 Console.WriteLine("TapPosY: " + sdEvent.TapPosY)
}

Global.OnStreamDeckTouchTap = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckDialRotate = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckDialDown = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckDialUp = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckKeyDown = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}
Global.OnStreamDeckKeyUp = function (sdEvent)
{
 printSDEvenyInfo(sdEvent)
}

4.1.20 Graphic Hub REST
arc provides some methods that allow to retrieve information about the current Graphic Hub REST server in use. It
is meant to help using the Graphic Hub REST interface directly.

 string GetGHHost ()
 Returns the Graphic Hub REST host name (for example, localhost or 10.81.44.71).

 string GetGHPort ()
 Returns the Graphic Hub REST port (for example, 19398).

 string GetGHConnectionString ()
 Returns the complete connection string based on the configured Host and Port (for example, http://

localhost: 19398).
 string GetGHUser ()

 Returns the Graphic Hub REST user name (for example, Guest or Admin).
 string GetGHAuthenticationValue ()

http://localhost

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 55

 Returns the base64 authentication string which is a combination of the user name and password (for
example, QWRtaW46Vml6RGI=).

 bool ImportArchive (string path)
 Import a via archive through the REST service. Beware that all assets in the via override the content’s

of the Graphic Hub. Returns true on success and false on failure.
 async Task<bool> ImportArchiveAsync (string path)

 Async version of the above method.

Below is a code sample that fetches all the image names of a given Graphic Hub path using the
GetGHConnectionString and GetGHAuthenticationValue functions.

Sample

function getFolderId(path)
{
 let folderId = ""
 let request = new XMLHttpRequest()

 request.onreadystatechange = function() {
 if (request.readyState == 4 && request.status == 200) {
 //Console.WriteLine("respones: " + request.responseText)

 xmlDoc = new XmlDocument()
 xmlDoc.LoadXml(request.responseText)
 //Console.WriteLine("nodes " + xmlDoc.ChildNodes.Count)

 // create namespace manager
 nsmgr = new XmlNamespaceManager(xmlDoc.NameTable)
 // add namespace
 nsmgr.AddNamespace("x", "http://www.w3.org/2005/Atom")

 // search for x:model
 root = xmlDoc.DocumentElement
 folderId=root.SelectSingleNode("/x:feed/x:entry/x:id",
nsmgr).InnerXml.split(':')[2]
 Console.WriteLine("folder id " + folderId)
 }
 }
 request.open("GET", GetGHConnectionString()+"/translator/?path="+path, true)
 request.setRequestHeader("Authorization", "Basic " + GetGHAuthenticationValue())
 request.send();

 // fetch the images using the folder uuid
 GetImagesOfFolder(folderId)
}

function GetImagesOfFolder(folderId)
{
 let request = new XMLHttpRequest()

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 56

 request.onreadystatechange = function() {
 if (request.readyState == 4 && request.status == 200) {
 //Console.WriteLine("respones: " + request.responseText)

 xmlDoc = new XmlDocument()
 xmlDoc.LoadXml(request.responseText)
 //Console.WriteLine("nodes " + xmlDoc.ChildNodes.Count)

 // create namespace manager
 nsmgr = new XmlNamespaceManager(xmlDoc.NameTable)
 // add namespace
 nsmgr.AddNamespace("x", "http://www.w3.org/2005/Atom")

 // search for nodes 'entry'
 root = xmlDoc.DocumentElement
 imageNodes=root.SelectNodes("/x:feed/x:entry", nsmgr)
 //Console.WriteLine("nodes " + imageNodes.Count)

 let imageList = []

 for(node of imageNodes)
 {
 Console.WriteLine("image " + node.SelectSingleNode("./x:title",
nsmgr).InnerXml)
 imageList.push(node.SelectSingleNode("./x:title", nsmgr).InnerXml)
 }
 // set the dropdown
 // imagesDD.SetItems(imageList)
 }
 }
 request.open("GET", GetGHConnectionString()+"/files/" + folderId + "/?
term=IMAGE", true)
 request.setRequestHeader("Authorization", "Basic " + GetGHAuthenticationValue())
 request.send()
}

Other functions relative to the Graphic Hub:

 async Task<string[]> GetImages(path)
 Returns a string list of images in the Graphic Hub.

async function fetchImages(path)
{
 Console.WriteLine("fetching images in " + path)

 const results = await GetImages(path).then(results =>
 {
 dropdown_0.SetItems(results)
 })
}

Global.OnButtonPressed = function (id)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 57

{
 if(id == "button_0")
 {
 dropdown_0.Clear()
 fetchImages("sports/soccer/headshots")
 }
}

The above code snippet populates a dropdown with the image names contained in the Graphic Hub path sport/
soccer/headshots.

4.1.21 DataMap
arc provides an interface (get and set) for interacting with Viz Arc's DataMap:

 dynamic GetData (string varName)
 Returns the value belonging to the variable named varName. [dynamic] Returned value depends on

what was set to varName.
 void SetData (string varName, dynamic value)

 Inserts (or overwrites if varName already exists) the key:value pair into Viz Arc's DataMap. [dynamic]
Input value can be of any type.

 bool HasData (string varName)
 Returns true if varName exists in the DataMap.

 bool DeleteDataMapKey(string varName)
 Removes a variable from the DataMap. Returns true if the key existed and was deleted.

 void SubscribeDataMap (string variableName)
 Subscribes to a specific key (Empty string subscribes to all changes). The subbed variables feedback

triggers the script callback "OnDataMapValueChanged".
 void UnsubscribeDataMap (string variableName)

 Unsubscribes from a specific key (Empty string unsubscribes to all changes).
 string[] GetDataKeys ()

 Returns a complete list of all DataMap key entries.

DataMap Example

Global.OnInit = function ()
{
 // make sure OnDataMapValueChanged is called when "someData" changes
 SubscribeDataMap("someData")

 // use blank string to subscrive to all DataMap changes
 //SubscribeDataMap("")

 // create a timer that triggers every second
 CreateTimer("aTimer")
 StartTimer("aTimer", 1000)
}

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 58

// Callback for DataMap changes
Global.OnDataMapValueChanged = function (varName)
{
 if(varName == "someData")
 UpdateSomeData(GetData(varName))
}

function UpdateSomeData(theData)
{
 // do something here
 Console.WriteLine("new data " + theData)
}

Global.OnTimer = function (id)
{
 // generate some fresh data using the current time for testing
 // such that OnDataMapValueChanged gets called
 if(id == "aTimer")
 SetData("someData", Date.now())
}

function printDataMap()
{
 var keys = GetDataKeys()

 for(k of keys)
 Console.WriteLine(k + " = " + GetData(k))
}

4.1.22 NDI
arc provides an interface to handle metadata feedback from NDI sources.

 string[] GetNDISourceList ()
 Returns an array with all the names of the available NDI sources.

 string[] GetNDIPTZSourceList ()
 Returns an array with all the names of the available NDI sources with PTZ control capabilities.

 bool SubscribeNdiSourceMetadata (string source)
 Subscribes to the metadata feedback on the NDI source identified by the provided source input. The

feedback is sent to the datamap with key equal to the source name. Returns true on success, false
otherwise.

 bool UnsubscribeNdiSourceMetadata (string source)
 Unsubscribes the NDI feedback. Returns true on success, false otherwise.

 bool SendNDIMetadata (string name, string XMLString)
 Sends a XMLString to a source identified by name. Returns true on success, false otherwise.

Note: Whenever a DataMap variable changes the global script's callback OnDataMapValueChanged is
called.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 59

DataMap Example

Global.OnInit = function ()
{
 // Get a list of available NDI sources (can take some time to update)
 var sources = GetNDISourceList()

 // subscribe to metadata changes on a ndi stream
 SubscribeNdiSourceMetadata("NEWTEKPTZ (Channel 1)")

 // metadata will be written into the DataMap, so register to the DataMap changes
also
 SubscribeDataMap("NEWTEKPTZ (Channel 1)")
}

Global.OnDataMapValueChanged = function (varName)
{
 Console.WriteLine(varName + " changed")
 // NDI metadata is typically in xml format
 Console.WriteLine(GetData(varName).ToString())
}

Global.OnParameterChanged = function (id)
{
 if(id == "sendMetadata")
 {
 SendNDIMetadata("NEWTEKPTZ (Channel 1)", "<?xml version='1.0' encoding='UTF-8'?
><camera_control><command group_id='0' parameter_id='3' value='0.43'></
camera_control>")
 }
}

4.1.23 File Handling
 string ReadTextFile (string filename, string encoding = "UTF8")

 Returns a encoding encoded string containing the whole content of the text file.
 bool WriteTextFile (string FullPath, string data, string encoding = "UTF8")

 Writes a file at FullPath with its content equal to the encoded input data.

Valid encodings: "UTF8", "ASCII", "BigEndianUnicode", "Default" [System defined encoding], "UTF32",
"UTF7"

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 60

File Handling Example

// Get the StartList file content from the directory defined by the Directory
parameter "WorkingDir"
ReadTextFile(WorkingDir.Value + "\\StartList.json")

// Write the results to the directory defined by the Directory parameter "WorkingDir"
WriteTextFile(WorkingDir.Value + "\\RaceResults.json", results)

4.1.24 Logging
 bool AddLog (string fileName, string content)

 Appends content to fileName, and returns true on success, false otherwise. If the file fileName does
not exist, it is created.

// register data map changes somewhere (e.g. SubscribeDataMap(""))
Global.OnDataMapValueChanged = function (varName)
{
 AddLog("c:/tmp/templateLog.txt", "getting data " + varName + " = " +
GetData(varName))
}

The produced log file content contains entries as the example below:

2025/07/08 19:20:34.1389|getting data TIMECODE = 02:55:59:43

4.1.25 JSON
 dynamic ParseJson (string data)

 Deserializes the input data and returns a JSON object if successful.

On the returned JSON object you can access the members directly using their name. Use the "ToString()" method
on any of the objects to convert them to strings.

var json = ParseJson("{time: '1994-11-05T13:15:30Z', title: 'Viz Arc', subtitle:
'Vizrt', messageId: 1}")
Console.WriteLine("the whole json " + json.ToString())
Console.WriteLine("the title is " + json.title.ToString())

When using the V8 Scripting Engine the built-in JSON.parse and JSON.stringify methods can be used

var json = JSON.parse('{"time": "1994-11-05T13:15:30Z", "title": "Viz Arc",
"subtitle": "Vizrt", "messageId": 1}')
Console.WriteLine("the whole json " + JSON.stringify(json))

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 61

Console.WriteLine("the title is " + json.title)

4.1.26 Excel
 string convertXLSToCSV (string excelFilePath, string csvOutputFile, string separator = "\t", int

worksheetNumber = 1)
 Converts an existing .xls file excelFilePath to a comma separated CSV file csvOutputFile usign

separator (default tab separator) and using worksheet number worksheetNumber (1 default being the
first worksheet in the Excel file).

 On successful conversion the function returns the CSV output as a string.
 string convertXLSToCSVString (string excelFilePath, string separator = "\t", int worksheetNumber = 1)

 Converts an existing .xls file excelFilePath to a comma separated CSV string using separator (default
tab separator) and using worksheet number worksheetNumber (1 default being the first worksheet in
the Excel file).

 On successful conversion the function returns the CSV output as a stirng.
 void convertXLSToCSVDataMap (string excelFilePath, string dataMapPrefix, string separator = "\t", int

fromSheet = 1, int toSheet = -1)
 Converts an existing .xls file excelFilePath to a comma separated CSV file csvOutputFile usign

separator (default tab separator) and using an optional range of worksheets. When toSheet is -1 it
converts all worksheets. The resulting worksheets are written into the DataMap using the specified
prefix in dataMapPrefix. The name of the worksheet is written to the DataMap key
dataMapPrefix<name>_<index>.

let separator = ";"
// convert excel to CSV file, use ; as separator and read the second sheet
convertXLSToCSV("c:/tmp/ExcelData.xlsx", "c:/tmp/ExcelData.csv", separator, 2)
// read the whole csv file into a string
var fileContent = ReadTextFile("c:/tmp/ExcelData.csv")
var EntryArr = fileContent.split("\n")

// First line is for the headers, ignore it
for(i = 0; i < EntryArr.length; i++)
{
 // split the row
 var spl = EntryArr[i].split(separator)
 if(spl.length <= 1)
 continue;

 Console.WriteLine("row " + i + ":")

 // print colums one by one separated by a whitespace
 for(entry of spl)
 Console.Write(entry.trim() + " ")

 Console.WriteLine("")
}

// another writing all worksheets to the DataMap, use separator ","

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 62

convertXLSToCSVDataMap("c:/tmp/ExcelData.xlsx", "excelData_", ",")

How the resulting DataMap might look like after calling convertXLSToCSVDataMap when the excel file contains just
one worksheet.

4.1.27 Callbacks
 OnParameterChanged (string parameterID)

 Called whenever a parameter (except button and table) changes. parameterID is the ID of the
parameter that triggered the callback.

 OnButtonPressed (string buttonName)
 Called when a parameter button is pressed. buttonName is the ID of the button that triggered the

callback.
 OnMiddleButtonPressed (string buttonName)

 Called when a button is pressed with the middle mouse button. buttonName is the ID of the button
that triggered the callback.

 OnRightButtonPressed (string buttonName)
 Called when a button is pressed with the middle mouse button. buttonName is the ID of the button

that triggered the callback.
 OnTimer (string timerID)

 Called when a timer ticks (completes a cycle). timerID is the ID of the timer that triggered the
callback.

 OnDataMapValueChanged (string varName)
 Called whenever a DataMap variable changes. varName is the ID of the variable that was changed.

 OnStreamDeckKey (string key)
 Called whenever a StreamDeck button is pressed. key indicates the index of the pressed button.
 This callback is used in conjunction with the internal Stream Deck integration

The following StreamDeck callbacks are used with the external Stream Deck integration:

 OnStreamDeckKeyUp (sdEvent)
 Called whenever a Stream Deck button has been released.
 sdEvent contains the following fields:

 string EventType (the event type, for example, "keyUp")
 string Id (the unique ID of the device)
 int DeviceIndex (the index assigned to this device)
 int XKey (the column index of the key)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 63

 int YKey (the row index of the key)
 string Payload (the user defined payload)

 OnStreamDeckKeyDown (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp

 OnStreamDeckDialUp (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp

 OnStreamDeckDialDown (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp

 OnStreamDeckDialRotate (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp and additionally:

 int Ticks positive number for clockwise rotation and negative for anticlockwise rotation.
Minimum value is 1 and increases when doing fast movementes.

 OnStreamDeckTouchTap (sdEvent)
 Called whenever a Stream Deck button has been pressed.
 sdEvent contains the same fields as OnStreamDeckKeyUp and additionally:

 int TapPosX number from 0 to 200 (on Stream Deck + device) representing the horizontal
touch position

 int TapPosY number from 0 to 100 (on Stream Deck + device) representing the vertical touch
position

 OnMidiEvent (midiEvent)
 Called whenever a midi event is registered on one of the attached and configured midi devices.
 midiEvent contains the following fields:

 string DeviceName (the name of the device triggering the midi event.
 string EventType (either "ControlChange", "NoteOn" or "NoteOff").
 int Channel (the control channel of the event).
 int Number (the control number of the event).
 int Value (the value of the event, in the range [0..127]).
 int Note (the note of the event in case EventType is NoteOn or NoteOff).
 int Velocity (the velocity of note event in case EventType is NoteOn or NoteOff).

 OnDMXEvent (dmxEvent)
 Called whenever a dmx lighting value changes
 dmxEvent contians the followinf fields:

 short Universe (the Univers ehtat changed)
 byte[] DMXData (the entire 512 byte long data array)
 byte[] change (a 512 byte long array containing information about channel changes)
 int firstDiff (the index of the first channel that changed)

 bool HasChanged(int index)
Call this function to check whether a certain channel has changed

 Table Callbacks
 OnTableColumnsChanged (string tableID)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 64

 Called whenever a table parameter's columns change in number. tableID is the ID of the table
that triggered the callback.

 OnTableRowsChanged (string tableID)
 Called whenever a table parameter's rows change in number. tableID is the ID of the table that

triggered the callback.
 OnTableCellValueChanged (string tableID, int row, int column, BaseBlock cell)

 Called whenever a table parameter's cell changes value. tableID is the ID of the table that
triggered the callback. row and column indicate the position of the cell within the caller table
parameter. cell is the cell object that was changed. Users can interact directly with it. When
Trigger on live changes is enabled on the table property, this callback is called also while
editing the cell, if not the callback is called when keyboard focus is lost on the edited cell.

Video Output Callbacks

 OnVideoMouseLeftButtonDown (Point point)
 Invoked when the left mouse button is pressed on the preview output. point.X and point.Y are

normalized coordinates in the range of [-0.5…0.5] where [0,0] is the center of the screen.
 OnVideoMouseRightButtonDown (Point point)

 Invoked when the right mouse button is pressed on the preview output. point.X and point.Y are
normalized coordinates in the range of [-0.5…0.5] where [0,0] is the center of the screen.

 OnVideoMouseMove (Point point)
 Invoked when the right mouse moves on the preview output. point.X and point.Y are normalized

coordinates in the range of [-0.5…0.5] where [0,0] is the center of the screen.
 OnVideoMouseWheel (double delta)

 Invoked when the mouse wheel is turned on the preview output. delta is a floating point typically
being -120/120 depending on the direction of the wheel turn and the hardware connected.

 OnVideoKeyDown (char charKey, uint rawKey, KeyEventArgs eventArgs)
 Invoked when a keyboard down event has taken place on the preview output. charKey contains the

actual character of the pressed key, rawKey is the numeric representation of the pressed key and
eventArgs is a System.Windows.Input.KeyEventArgs instance from the operating system representing
the raw event information.

4.1.28 Exposed Objects

Console

 void Write (string message)
 Writes the message to the scripting console.

 void WriteLine (string message)
 Writes the message to the scripting console followed by a new line.

Info: When Viz Arc’s log level is set to TRACE, the strings sent to Write and WriteLine are also logged in the
global log file.

https://learn.microsoft.com/en-us/dotnet/api/system.windows.input.keyeventargs

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 65

MessageBox

 void Show (string message)
 Shows a message box with its content equal to message.

 void Show (string message, string title)
 Shows a message box with titled title and with its content equal to message.

File Handling Example

// Log an error and show a message to the user
Console.WriteLine("Unable to load data")
MessageBox.Show("Unable to load data", "Load Error")

XmlDocument
XmlDocument allows you to read XML files or strings and aggregate data using XPath. Read more about
XMLDocument and other classes here.

// create XmlDocument and load a xml from disc
xmlDoc = new XmlDocument()
xmlDoc.Load("C:/tmp/TestData.xml")
Console.WriteLine("nodes " + xmlDoc.ChildNodes.Count)

// create namespace manager
nsmgr = new XmlNamespaceManager(xmlDoc.NameTable)
// add namespace
nsmgr.AddNamespace("x", "http://www.contoso.com/books")

// search for book nodes under the books node
root = xmlDoc.DocumentElement
nodeList=root.SelectNodes("/x:books/x:book", nsmgr)
Console.WriteLine("books " + nodeList.Count)

for(var book of nodeList)
 Console.WriteLine("ISBN: " + book.GetAttribute("ISBN") + " title: " +
book.SelectSingleNode("./x:title", nsmgr).InnerXml)

The content of the sample test file C:/tmp/TestData.xml might look like this:

<?xml version="1.0" encoding="utf-8"?>
<books xmlns="http://www.contoso.com/books">
 <book genre="novel" ISBN="1-861001-57-8" publicationdate="1823-01-28">
 <title>Pride And Prejudice</title>
 <price>24.95</price>
 </book>

https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmldocument?view=net-6.0

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 66

 <book genre="novel" ISBN="1-861002-30-1" publicationdate="1985-01-01">
 <title>The Handmaid's Tale</title>
 <price>29.95</price>
 </book>
 <book genre="novel" ISBN="1-861001-45-3" publicationdate="1811-01-01">
 <title>Sense and Sensibility</title>
 <price>19.95</price>
 </book>
</books>

XMLHttpRequest
With the XMLHttpRequest class you can fetch data from a remote server. Below is a sample that fetches
asynchronously JSON data from a server.

var request = new XMLHttpRequest()

request.onreadystatechange = function() {
 if (request.readyState == 4 && request.status == 200) {
 Console.WriteLine("we are here")

 var json = JSON.parse(request.responseText)

 Console.WriteLine(JSON.stringify(json))

 for (elem of json)
 Console.WriteLine(elem.name)
 }
}
request.open("GET", "https://jsonplaceholder.typicode.com/users", true)
request.setRequestHeader("Content-Type", "application/json") // make sure the
request header is set AFTER calling open
request.send()

xlAppType
This type allows you to read Excel sheets directly.

Prevent Caching

It is possible that requests through XMLHttpRequest get cached and the results of the queries might seem
outdated. In order to prevent caching you can add a random number as parameter of the request.
request.open("GET", "https://jsonplaceholder.typicode.com/users?

dummy="+Date.now(), true)
In this case a dummy parameter is assigned with the current EPOCH date in milliseconds.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 67

FSO
The FSO object allows you to read, create and write files.

 OpenTextFile (filename, [iomode, [create, [format]]])
 iomode can be one of the following: IOMode.ForReading, IOMode.ForWriting, IOMode.ForAppending
 format can be of the following: Tristate.TristateUseDefault (system default), TriState.TristateTrue

(Unicode), TriState.TristateFalse (ASCII).

Reading a UTF8 Encoded Text File

var file = new FSO()
var stream = file.OpenTextFile("d:/testexport.txt")
// or
var stream = file.OpenTextFile("d:/testexport.txt", IOMode.ForReading, false,
Tristate.TristateTrue)

Console.WriteLine(stream.ReadAll())

4.1.29 xHost
The xHost object gives you access to virtually any .NET resource.

V8 Script Sample

var List = xHost.type('System.Collections.Generic.List')
var DayOfWeek = xHost.type('System.DayOfWeek')
var week = xHost.newObj(List(DayOfWeek), 7)
week.Add(DayOfWeek.Sunday)

You can even import entire assemblies:

V8 Enumerate Files in Directory

var clr = xHost.lib('mscorlib', 'System', 'System.Core', 'System.IO')
dropdown_0.Clear()
var dir = clr.System.IO.Directory
dropdown_0.SetItems(dir.GetFiles('c:\\tmp'))

// another sample that starts an external process "calc.exe"
var proc = xHost.lib('System.Diagnostics.Process')

Note: This object only works if there is a local Excel installation on the same machine where Viz Arc is
running.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 68

proc.System.Diagnostics.Process.Start("calc.exe")

In the example above, a UI dropdown element named dropdown_0 is populated with a file list contained in c:\tmp
using .NET System.IO.Directory class instance.

Another example is how to convert a XML into JSON using the Newtonsoft library:

// get the library handle
var NewtonsoftLib = xHost.lib('Newtonsoft.Json')
// get a reference to the JsonConvert class
var JsonConvert = NewtonsoftLib.Newtonsoft.Json.JsonConvert

function convertXMLToJSON(fileName)
{
 // error checking omitted for clarity
 // read xml document from disc:
 let xmlDoc = new XmlDocument()
 xmlDoc.Load(fileName)

 // set the raw XML data into the DataMap
 SetData("infoXML", xmlDoc.InnerXml)

 // use C# Newtonsoft XML serializer
 let jsonOut = JsonConvert.SerializeXmlNode(xmlDoc)

 // set the converted json into the DataMap
 SetData("infoJson", jsonOut)
}

4.1.30 Performance
The performance object provides access to performance-related information.

 now ()
 Returns a floating point value of the EPOCH time in milliseconds.

 sleep (milliseconds, precise)
 Sleep for a certain amount of milliseconds. Set precise to true when a high precision timer is

required.

let timeA = Performance.now()
Performance.sleep(500, true) // high perf sleep half second
// do something else
let timeB = Performance.now()

Console.WriteLine("timeA " + timeA)
Console.WriteLine("timeB " + timeB)
Console.WriteLine("time difference " + (timeB- timeA) + " ms")

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 69

4.1.31 Garbage Collection
Especially for long running scripts it might be useful to force calling the garbage collector from script.

 void ForceGarbageCollection(bool collectHostItems)
 Calls the .NET garbage collector and frees unreferenced memory. Set collectHostMemeory to true for

a more aggressive cleanup including the collection of script internal objects.

Garbage collection usually is triggered automatically. In some cases it might be useful to force garbage collection to
control memory usage. Note that the garbage is always collected when stopping a script or when loading a new
project.

4.1.32 SQL Sample
If you know the assembly name of a specific type, you can instantiate it using xHost.type(name, assemblyName)
method.

var queryString = "SELECT * FROM someTable"
var connetionString = "Server=192.168.1.42,1433;UID=aUserID;PWD=SomePassword;"

// get types using xHost.type
var SqlConnection = xHost.type('System.Data.SqlClient.SqlConnection',
'System.Data.SqlClient')
var SqlCommand = xHost.type('System.Data.SqlClient.SqlCommand',
'System.Data.SqlClient')
var SqlDataReader = xHost.type('System.Data.SqlClient.SqlDataReader',
'System.Data.SqlClient')

connection = new SqlConnection(connetionString)
connection.Open()
var command = new SqlCommand(queryString, connection)
var reader = command.ExecuteReader()
// do something with the data
while (reader.Read())
{
 // iterate over the result and print the result on the console
 Console.WriteLine(reader.GetString(0))
}
connection.Close()

4.1.33 SQLite Sample
Another sample that uses the xHost.type function is the usage of a simple SQLite database. It is required that the
SQLite libraries/DLLs are in the search path of the system or in the same directory as the Viz Arc executable.

var SQLiteConnection = xHost.type('System.Data.SQLite.SQLiteConnection',
'System.Data.SQLite')

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 70

// those two below are not needed for this sample as they dont get instantiated
explicityl
var SQLiteDataReader = xHost.type('System.Data.SQLite.SQLiteDataReader',
'System.Data.SQLite')
var SQLiteCommand = xHost.type('System.Data.SQLite.SQLiteCommand',
'System.Data.SQLite')

function ReadData(conn)
{
 // create q query
 sqlite_cmd = conn.CreateCommand()
 sqlite_cmd.CommandText = "SELECT Name FROM Artist LIMIT 10;" // read first 10
artists of the table

 // execute the query
 sqlite_datareader = sqlite_cmd.ExecuteReader();
 while (sqlite_datareader.Read())
 {
 // iterate over the result and print the result on the console
 Console.WriteLine(sqlite_datareader.GetString(0));
 }
}

function testSQLiteDB()
{
 // create a new connection specifying the database file name and the version
 // sample database can be found here https://github.com/lerocha/chinook-database
 conn = new SQLiteConnection("Data Source=C:\\tmp\\Chinook.db;Version=3;")
 try
 {
 // Open the connection:
 conn.Open()

 // read some data
 ReadData(conn)

 // close the connection
 conn.Close()
 }
 catch (ex)
 {
 Console.WriteLine("error in SQLite query " + ex)
 }
}

Global.OnInit = function ()
{
 testSQLiteDB()
}

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 71

4.1.34 TcpSend
The TcpSendAsync method, is used to send a short message to any host on any port of the network.

 Task<string> TcpSendAsync (string hostname, int port, string command, int timeoutInMs = 1000)
 Send command to hostname on port. If the parameter timeoutInMs is not specified, a default timeout

of 1 second is used.

Global.OnButtonPressed = async function (id)
{
 if(id == "sendTcp"){
 let response await TcpSendAsync("192.168.1.22", 1234, "say something\0",
5000)
 Console.WriteLine("response from client " + response)
 }
}

4.1.35 HtmlAgility Example
The classes HtmlDocument and HtmlWeb are exposed by the HtmlAgility library and enable parsing and data
extraction of html pages.

 //sample to use HtmlDocument class from HtmlAgility
 var doc = new HtmlDocument()
 doc.Load("c:/tmp/HtmlAgilityTest.html")

 for (var table of doc.DocumentNode.SelectNodes("//table")) {
 Console.WriteLine("Found: " + table.Id)

 for (var row of table.SelectNodes("tr")) {
 for (var cell of row.SelectNodes("th|td"))
 Console.Write(cell.InnerText + " ")
 Console.WriteLine("")
 }
 }

 // sample to use HtmlWeb class from HtmlAgility
 var html = "http://html-agility-pack.net/"
 var web = new HtmlWeb()
 var htmlDoc = web.Load(html)
 var node = htmlDoc.DocumentNode.SelectSingleNode("//head/title")
 Console.WriteLine("Node Name: " + node.Name + "\n" + node.OuterHtml)

The contents of the file from the sample above c:/tmp/HtmlAgilityTest.html:

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 72

HTML Sample with Table

<!DOCTYPE html>
<html>
<style>
 table, th, td {
 border: 1px solid black;
 }
</style>
<body>
 <h2>A HTML table to test HTML Agility</h2>
 <table style="width:100%" id="dataTable">
 <tr>
 <th>Name</th>
 <th>Number</th>
 <th>Country</th>
 </tr>
 <tr>
 <td>Athlete A</td>
 <td>42</td>
 <td>Italy</td>
 </tr>
 <tr>
 <td>Athlete B</td>
 <td>34</td>
 <td>Japan</td>
 </tr>
 </table>
 <p>Here is some more text</p>
</body>
</html>

Read more about HtmlAgility here.

4.1.36 Main Script-only
There are functionalities that are specific to Viz Arc's main script:

Canvas Tabs Handling

 void SetActionsSelectedTab (string tabName)
 Looks for a tab named tabName and sets it as active.

 void SetActionsSelectedTab (int tabIndex)
 Sets the Action selected tab to the tab at tabIndex index.

 string GetActionsSelectedTabName ()
 Returns the currently selected tab's name.

 string[] GetActionsTabs ()

https://html-agility-pack.net/documentation

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 73

 Returns a string array with all tab names.

Action Template Handling
Arc's main scripts allows the user to interact with template actions on the action canvas.

 void PreviewSelectedTemplate ()
 Previews the currently selected template action.

 void ExecuteSelectedTemplate ()
 Executes the currently selected template action.

 void UpdateSelectedTemplate ()
 Updates the currently selected template action.

 void ContinueSelectedTemplate ()
 Continues the currently selected template action.

 void StillPreviewSelectedTemplate ()
 Generates a still preview of the currently selected template action.

Callbacks

 PreActionExecute (string actionName)
 Called whenever an is executed and before the actual execution occurs.
 actionName is the name of the action that is being executed.

 PosActionExecute (string actionName)
 Called whenever an is executed and after the actual execution occurs.
 actionName is the name of the action that is being executed.

 OnInit ()
 Called when the main script is started (User clicks on the Start button).

4.1.37 Template Script-only
The template script is a specific version that is used on the template designer and on the template action.

Action/Designer Handling

 void ExecuteTemplate ()
 Executes the owner template action or loaded template in the designer.

 void ContinueTemplate ()
 Continues the owner template action or loaded template in the designer.

 void OutTemplate ()
 Takes out the owner template action or loaded template in the designer.

 void UpdateTemplate ()
 Updates the owner template action or loaded template in the designer.

 void UpdateTemplate (string COs = null)

Note: The method presented only works when one and only one action (template action) is selected on
the action canvas.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 74

 Updates the owner template action or loaded template in the designer. The parameter COs is a space
separated list of Control Object ID's that shall be updated. For large templates containing a big
amount of ControlObjects this is a very efficient alternative whenever only a small part in the scene
needs to be updated. For example, UpdateTemplate("currentScore totalScore") updates only the
two ControlObjects with id "currentScore" and "totalScore".

 void UpdateTemplate ("BP_Name.VariableName")
 Updates the owner template action or loaded template in the designer. This method can be used if

the scene is in Unreal Engine. For large templates containing a large amount of variables, this is a
very efficient alternative when only a variable in the blueprint needs to be updated.

 void UpdateTemplate ("BP_Name", "[VariableName1, VariableName2, ecc...]")
 Updates the owner template action or loaded template in the designer. This method can be used if

the scene is in Unreal Engine. For large templates containing a large amount of variables, this is a
very efficient alternative when only a few variables in the blueprint need to be updated.

 void PreviewTemplate ()
 Previews the owner template action or loaded template in the designer.

 void PreviewExecuteTemplate ()
 Executes the owner template action or loaded template in the designer to the preview channel.

 void PreviewContinueTemplate ()
 Executes the owner template action or loaded template in the designer to the preview channel.

 void PreviewOutTemplate ()
 Executes the owner template action or loaded template in the designer to the preview channel.

 void PreviewUpdateTemplate (string COs = null)
 Updates the owner template action or loaded template in the designer to the preview channel. The

parameter COs is a space separated list of Control Object ID's that shall be updated. For large
templates containing a big amount of ControlObjects this is a very efficient alternative whenever only
a small part in the scene needs to be updated. For example, UpdateTemplate("currentScore
totalScore") updates only the two ControlObjects with id "currentScore" and "totalScore".

Properties

 BaseAction ThisAction
 Returns the script accessor of this template. ThisAction might be null when using the template

editor.

if(ThisAction){
 // set the action's name
 ThisAction.Name = "Hello"
 // set the action's tooltip description
 ThisAction.Description = "Hello Description"
}

Control Object Handling
The template script allows the user to interact with the template's control objects, only supported for Viz and
Flowics templates.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 75

 void SetControlObject (string objectID, dynamic value)
 Sets the control object with id equal to objectID's value to value. The set object's value is sent on

template execute/update.
 ControlObject ID's set by this methods which have not been present in the payload during template

creation, are added dynamically.

 bool HasControlObject (string objectID)
 Returns true when the objectId has been assigned wither through the UI or through code using the

SetControlObject method, otherwise it returns false.

Template Channels Handling
The template script allows the user to change the program output channel.

 void SetSelectedChannel (string name)
 Sets the selected program output channel to name.

 ScriptingChannel GetSelectedChannel ()
 Returns the currently selected program channel of the template action.

ScriptingChannel
The ScriptingChannel class is used for finer control on the Engines contained in the channel.

Properties

 Name
 The channel's name.

 Count
 The number of Engines in the channel.

Methods

 void SendSingleCommand (string command)
 Sends command to all the Engines in the channel.

 void SendMultipleCommands (string[] commands)
 Sends all the input commands to all the Engines in the channel.

 void SendToSMM (string key, string value, bool doEscape)
 Sends key-value pair to Shared Memory to all Engines contained in the channel. doEscape specifies

whether the value string is escaped.
 void SendToSMM (string key, string value, bool doEscape, string destination)

 Sends key-value pair to Shared Memory to all Engines contained in the channel. doEscape specifies
whether the value string is escaped.

 destination can be either SYSTEM, COMMUNICATION or DISTRIBUTED

Note: SetControlObject only works on control objects that aren't already linked to UI parameters.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 76

Template Scene Handling
The template script allows the user to set the scene that should be loaded when executing.

 void SetSceneFullpath (string fullpath = null)
 The input fullpath is the value that is sent to the Engine when executing the template. When no full

path is provided the user config value is removed and the original attached scene is used.
 string GetBaseContainerPath ()

 Returns the current base container path where the root control object is located.
 bool SetBaseContainerPath ()

 Sets the base container path where the root control object is located. This might be useful to redirect
the destination of the ContolObjects to a different container in the same scene.

 string GetDirector ()
 Gets the current director executed on Execute or on Continue.

 bool SetDirector (string dir)
 Sets the director executed on Execute or on Continue.

Template Action Configuration

 bool IsCommandHeaderVisible
 Indicates whether the CommandHeader should be visible on the template action.

 bool UpdateOnSelected
 When this flag is set, the script callbacks are only triggered when the template action is selected on

the action canvas (blue border).

Callbacks

 OnCreated ()
 Called when the template script is executed (when the template action is created and when the

template opened on the designer is started).
 OnDestroyed ()

 Called when template is being stopped/destroyed. Can be used for cleanup, save state, stopping/
canceling timers.

 OnShow ()
 Called when the template is shown (when the template action's pop-up is opened, when the action

becomes embedded and when the template opened on the designer is started).
 OnExecute ()

 Called when the template is executed.
 OnPreviewExecute ()

 Called when the template is executed to the preview channel.
 OnContinue ()

 Called when the template is continued.
 OnPreviewContinue ()

 Called when the template is continued to the preview channel.
 OnUpdate ()

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 77

 Called when the template is updated.
 OnPreviewUpdate ()

 Called when the template is updated to the preview channel.
 OnOut ()

 Called when the template is taken out.
 OnPreview ()

 Called when the template is previewed.
 OnTrackerAction (string action)

 Called on certain Object Tracker events. the action parameter determines the type of event:
 take: Triggered when Object Tracker is taken On Air.
 takeout: Triggered when Object Tracker is taken Off Air.
 preview: Triggered when Object Tracker preview is taken.
 previewout: Triggered when Object Tracker preview is taken out.
 newTracker <index>: Triggered whenever a new object has been selected for tracking. index

is 1 based.
 lostTracker <index>: Triggered whenever a tracked object has lost tracking. index is 1 based.

Sample Usage of Object Tracker Script API

Global.OnTrackerAction = function (action)
{
 Console.WriteLine("tracker action " + action)

 if(action == "take")
 GetAction("DATA").Execute()
 else if(action.startsWith("newTracker")){
 // we want to take off air whatever is On Air when we select a new tracked
object
 TakeOutTracker()
 Console.WriteLine("OFF AIR")
 }
}

 OnArenaPosition (double screenX, double screenY, double worldX, double worldY, double worldZ)
 Called when the user clicks on the Viz Arena view with the positioning tool.

 screenX and screenY are the screen coordinates of the mouse click. The lower left corner of
the arena screen is the origin (0,0).

 wolrdX, worldY and worldZ are Viz Engine world coordinates, the units (default meters) are
the same as for the selected Viz Arena project.

Note: The OnDestroyed callback has a maximum execution time of five seconds. If it exceeds this, the
template is forcefully stopped.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 78

4.1.38 Common Callbacks
Callbacks that can be used in the global script and template scripts

 OnVideoMouseLeftButtonDown (point)
 Called when the user pressed the left mouse button on the video output.

 point.X normalized value in the range [-0.5, 0.5]
 point.Y normalized value in the range [-0.5, 0.5]

 OnVideoMouseRightButtonDown (point)
 Called when the user pressed the left mouse button on the video output.

 point.X normalized value in the range [-0.5, 0.5]
 point.Y normalized value in the range [-0.5, 0.5]

 OnVideoMouseMove (point)
 Called when the user moved the mouse on the video output.

 point.X normalized value in the range [-0.5, 0.5]
 point.Y normalized value in the range [-0.5, 0.5]

 OnVideoMouseWheel (delta)
 Called when the user rolled the mouse wheel on the video output.

 delta is a floating point value, typical values are -120.0 for mouse wheel down and 120.0 for
mouse wheel up.

4.1.39 Parameters
Parameters are the base components of Viz Arc's scripting. A list of all existing parameters types and their
associated properties is presented below.

Base Parameters Functionality
The following properties and methods are shared among all parameters

 string Label [Get, Set]
 Gets/sets the label that is displayed on the UI.

 bool IsEnabled [Get, Set]
 Gets/sets the enabled status of the parameter. Disabled parameters can be interacted with.

 bool IsVisible [Get, Set]
 Sets whether the parameter is visible. Invisible parameters are visible (displayed as grayed out) only

while editing (and scripts are not running).
 double X [Get, Set]

 Gets/sets the horizontal position of the parameter on the canvas.
 double Y [Get, Set]

 Gets/sets the vertical position of the parameter on the canvas.
 double Width [Get, Set]

 Gets/sets the width of the parameter.
 double Height [Get, Set]

 Gets/sets the height of the parameter.
 void SetColor (byte r, byte g, byte b, byte a = 255)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 79

 Sets the parameter's color to the input RGBA color.
 string Color

 Gets/sets the parameter's selected color in Hex format, for example, #FF0A0A8C (#RRGGBBAA).
 int ColorR

 Gets/sets the parameter's selected red color value in the range [0, 255].
 int ColorG

 Gets/sets the parameter's selected green color value in the range [0, 255].
 int ColorB

 Gets/sets the parameter's selected blue color value in the range [0, 255].
 int ColorA

 Gets/sets the parameter's selected alpha value in the range [0, 255].
 string Tooltip [Get, Set]

 Gets/sets the tooltip of the UI element.
 string LinkedCO [Get]

 The name of the associated ControlObject (Template Scripting only).
 void UpdateDataLink()

 Forces an explicit evaluation of the DataLink expression associated with this parameter.

A sample use of the LinkedCO property:

Global.OnParameterChanged = function (id)
{
 // get linked ControlObject id associated to parameter 'id'. It is null if it's
not linked to any CO.
 let linkedCO = GetParameter(id).LinkedCO

 if(linkedCO)
 {
 Console.WriteLine("Changed: " + id + ", Linked Control Object ID: " +
linkedCO)

 // live update the template
 UpdateTemplate(linkedCO)
 }
}

Layout
The layout parameters allow the user to organize and improve the usability of a script/template.

Panel

 BaseParameter [] Children [Get]
 Returns an array with all of the panel's children.

 BaseParameter GetParameter (string parameterID)
 Tries to find a child with id equal to parameterID. Returns it if successful.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 80

Tabs

 string Value [Get, Set]
 Set: Attempts to find a tab with its name equal to the input. If found, sets it as selected tab.
 Get: Returns the name of the selected tab.

 BaseParameter [] Children [Get]
 Returns an array with all of the panel's children.

 BaseParameter GetParameter (string parameterID)
 Tries to find a child with id equal to parameterID. Returns it if successful.

 bool AllowReordering
 Whether a user can reorder the tabs.

 int SelectedIndex [Get, Set]
 Gets/sets the index of the selected tab.

Info

 string Value [Get, Set]
 Gets/sets the info text that displays on the parameter.

Label

TextColor

 string Value [Get, Set]
 Gets/sets the labels text color in Hex format, for example, #FF0A0A8C (#RRGGBBAA).

Dialogs

Color

 string Value [Get, Set]
 Gets/sets the parameter's selected color in Hex format, for example, #FF0A0A8C (#RRGGBBAA).

 int R [Get]
Gets the value of the red component in the range [0, 255].

 int G [Get]
Gets the value of the green component in the range [0, 255].

 int B [Get]
Gets the value of the blue component in the range [0, 255].

 int A [Get]
Gets the value of the alpha component in the range [0, 255].

 int RPercent [Get]
Gets the value of the red component in the range [0, 1].

 int GPercent [Get]
Gets the value of the green component in the range [0, 1].

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 81

 int BPercent [Get]
Gets the value of the blue component in the range [0, 1].

 int APercent [Get]
Gets the value of the alpha component in the range [0, 1].

 void SetR (int R)
Sets the red component in the range [0, 255].

 void SetG (int G)
Sets the green component in the range [0, 255].

 void SetB (int B)
Sets the blue component in the range [0, 255].

 void SetA (int A)
Sets the alpha component in the range [0, 255].

 void SetRGB (int R, int G, int B)
Sets the red, green and blue components in the range [0, 255].

 void SetRGBA (int R, int G, int B, int A)
Sets the red, green, blue and alpha components in the range [0, 255].

 void SetRPercent (double R)
Sets the red component in the range [0, 1].

 void SetGPercent (double G)
Sets the green component in the range [0, 1].

 void SetBPercent (double B)
Sets the blue component in the range [0, 1].

 void SetAPercent (double A)
Sets the alpha component in the range [0, 1].

 void SetRGBPercent (double R, double G, double B)
Sets the red, green and blue components in the range [0, 1].

 void SetRGBAPercent (double R, double G, double B, double A)
Sets the red, green, blue and alpha components in the range [0, 1].

DateTime
The DateTime parameter provides comprehensive date and time selection with extensive scripting capabilities
including component accessors, formatting helpers, Unix timestamp support, and range constraints.

 string Value [Get, Set]
 Gets/sets the date/time as ISO 8601 string (for example, "2025-01-15T14:30:00").

 string MinDate [Get, Set]
 Gets/sets the minimum selectable date (ISO format).

 string MaxDate [Get, Set]
 Gets/sets the maximum selectable date (ISO format).

 bool EnableTime [Get, Set]
 Gets/sets whether time selection is enabled (not just date).

 bool ShowSeconds [Get, Set]
 Gets/sets whether seconds are shown in the time picker.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 82

Component Accessors (Read-Only)

 int Year [Get]
 Gets the four-digit year (for example, 2025).

 int Month [Get]
 Gets the month (1-12).

 int Day [Get]
 Gets the day of month (1-31).

 int Hour [Get]
 Gets the hour (0-23).

 int Minute [Get]
 Gets the minute (0-59).

 int Second [Get]
 Gets the second (0-59).

Methods

 DateTime GetDateTime()
 Gets the value as a .NET DateTime object.

 void SetDateTime(DateTime dt)
 Sets the value from a .NET DateTime object.

 void SetDate(int year, int month, int day)
 Sets the date portion while preserving the time.

 void SetTime(int hour, int minute, int second = 0)
 Sets the time portion while preserving the date.

 long GetUnixTimestamp()
 Gets the value as Unix timestamp (seconds since January 1, 1970).

 void SetFromUnixTimestamp(long timestamp)
 Sets the value from a Unix timestamp.

 string GetDateString()
 Gets a formatted date string.

 string GetTimeString()
 Gets a formatted time string.

 string GetDateTimeString()
 Gets a formatted date and time string.

Examples

Basic Date/Time Access:

Global.OnCreated = function() {
 // Set initial value to now
 eventDateTime.SetDateTime(new Date())
}

Global.OnParameterChanged = function(id) {

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 83

 if (id === "eventDateTime") {
 // Access individual components
 Console.WriteLine("Year: " + eventDateTime.Year)
 Console.WriteLine("Month: " + eventDateTime.Month)
 Console.WriteLine("Day: " + eventDateTime.Day)
 Console.WriteLine("Hour: " + eventDateTime.Hour)
 Console.WriteLine("Minute: " + eventDateTime.Minute)
 Console.WriteLine("Second: " + eventDateTime.Second)
 // Get ISO string
 Console.WriteLine("ISO: " + eventDateTime.Value)
 }
}

Set Date and Time Separately:

Global.OnCreated = function() {
 // Set date to January 15, 2025 (preserves current time)
 eventDateTime.SetDate(2025, 1, 15)
 // Set time to 14:30:00 (preserves current date)
 eventDateTime.SetTime(14, 30, 0)
}

Unix Timestamp Conversion:

Global.OnCreated = function() {
 // Set from Unix timestamp
 let timestamp = 1704067200 // Jan 1, 2024 00:00:00 UTC
 eventDateTime.SetFromUnixTimestamp(timestamp)
 Console.WriteLine("Set to: " + eventDateTime.GetDateTimeString())
}

function getTimestamp() {
 // Get current value as Unix timestamp
 let ts = eventDateTime.GetUnixTimestamp()
 Console.WriteLine("Unix timestamp: " + ts)

 // Send to external system
 SetData("eventTimestamp", ts)
}

function syncWithServer() {
 // Receive timestamp from server
 let serverTimestamp = arc.GetData("serverTime")
 if (serverTimestamp)
 eventDateTime.SetFromUnixTimestamp(serverTimestamp)
}

Countdown Timer:

let countdownInterval = null;

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 84

Global.OnCreated = function() {
 // Set target date
 targetDateTime.SetDate(2025, 12, 31)
 targetDateTime.SetTime(23, 59, 59)
 // Start countdown
 countdownInterval = setInterval(function() {
 updateCountdown();
 }, 1000)
}
Global.OnDestroyed = function() {
 if (countdownInterval)
 clearInterval(countdownInterval);
}

function updateCountdown() {
 let now = new Date()
 let target = new Date(targetDateTime.Value)
 let diff = target - now // milliseconds

 if (diff <= 0) {
 countdownText.Value = "EVENT STARTED!"
 clearInterval(countdownInterval)
 return
 }

 // Convert to days, hours, minutes, seconds
 let days = Math.floor(diff / (1000 * 60 * 60 * 24))
 let hours = Math.floor((diff % (1000 * 60 * 60 * 24)) / (1000 * 60 * 60))
 let minutes = Math.floor((diff % (1000 * 60 * 60)) / (1000 * 60))
 let seconds = Math.floor((diff % (1000 * 60)) / 1000)

 countdownText.Value = days + "d " + hours + "h " + minutes + "m " + seconds + "s
}

Date Arithmetic:

function addDays(days) {
 let current = new Date(eventDateTime.Value)
 current.setDate(current.getDate() + days)
 eventDateTime.SetDateTime(current)
}

function addHours(hours) {
 let current = new Date(eventDateTime.Value)
 current.setHours(current.getHours() + hours)
 eventDateTime.SetDateTime(current)
}

Global.OnButtonPressed = function(id) {
 if (id === "addOneDay")
 addDays(1)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 85

 else if (id === "addOneHour")
 addHours(1)
 else if (id === "setToNow")
 eventDateTime.SetDateTime(new Date())
 else if (id === "setToMidnight")
 eventDateTime.SetTime(0, 0, 0)
}

Working with JavaScript Date Objects:

Global.OnCreated = function() {
 // DateTime parameter value is ISO string, compatible with JS Date
 let jsDate = new Date(eventDateTime.Value)
 Console.WriteLine("JavaScript Date: " + jsDate)

 // Set from JavaScript Date
 let tomorrow = new Date()
 tomorrow.setDate(tomorrow.getDate() + 1)
 eventDateTime.Value = tomorrow.toISOString()
}

Directory

 string Value [Get, Set]
 Gets/sets the selected directories fullpath.
 Set: The input value must be a valid directory in the file system.

File

 string Value [Get, Set]
 Gets/sets the selected file's fullpath.

 bool WatchFile [Get, Set]
 Enable/disable the watchfile feature.

 bool ReadRawContent [Get, Set]
 Set to true if the raw file content should be read into the DataMap. Set to false if it is an excel or csv

file.
 string Separator [Get, Set]

 The separator when reading a csv file. Default is “,”.

Note: The Value property always uses ISO 8601 format ("2025-01-15T14:30:00"), which is compatible with
JavaScript's Date constructor and most APIs.

Note: DateTime values are stored without explicit timezone information. If you need timezone-aware
dates, handle timezone conversion in your script.

Note: Year, Month, Day, Hour, Minute, and Second properties are read-only. Use SetDate() or SetTime()
methods to modify them.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 86

 string Sheet [Get, Set]
 The name of the excel sheet to be read.

 string StartCell [Get, Set]
 The name of the start cell to read the content from (for example, “B5”).

 string StartCell [Get, Set]
 The name of the end cell to read the content from (for example, “H11”).

 bool HasHeaders [Get, Set]
 Indicates whether or not the first row of the table content is a header row.

 bool ConvertToJson [Get, Set]
 Whether to convert the content of the file into a json format.

 string DataMapTarget [Get, set]
 The name of the key to be used in the DataMap to send the content of the file to.

 void ReloadFile()
 Forces to read the content of the file. Might be used when WatchFile is disabled.

Asset

 string Value [Get, Set]
 Gets/sets the selected asset's fullpath.
 Set: The input path needs to be valid.

 string Prefix [Get, Set]
 The prefix to be added to the Value when sent to the engine.

 string Postfix [Get, Set]
 The postfix to be added to the Value when sent to the engine.

 async void SetImage (string name)
 An awaitable method to set an image name.

WebView
This component lets you view a web page.

 string Value [Get, Set]
 Gets/sets the URL of the web page to be visualized.

 void Reload ()
 Reloads the current page.

 void GoBack ()
 Navigates back in history.

 void GoForward ()
 Navigates forward in history.

 void ExecuteJavascript (string method)
 Invokes method on the currently loaded web page.

 void ExecuteJavascript (string method, params object[] args)
 Invokes method with args as arguments on the currently loaded web page.

Note: Valid input values are: Graphic Hub items (Image, Geom, Material), Media service links (http://...) or
local file system files.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 87

A sample html file that might be loaded in a WebView:

<!DOCTYPE html>
<html>
<body>

<button onclick="DataMapButton()">Set Data Map</button>
<input type="text" id="someText" oninput="wroteSomeText()">

<p id="demo"></p>

<script>
function DataMapButton() {
 let text = document.getElementById("someText").value;
 // set the data map variable 'fromWebPage' to the entered value
 arc.SetData("fromWebPage", text);
}
function wroteSomeText() {
 let text = document.getElementById("someText").value;
 document.getElementById("demo").innerHTML = "You wrote: " + text;
 // interact with arc and set the parameter "text_0" to the value just entered
 arc.SetParameterValue("text_0", text);
}

function someFunction1()
{
 alert("You invoked someFunction1!")
}

function someFunction2(para1, para2)
{
 alert("You invoked someFunction2 with arguments: " + para1 + " " + para2)
}
</script>
</body>
</html>

Note the arc object which gets injected and gives access to all scripting methods available in Viz Arc. For example,
arc.SetData(“matchResult”, “0:1”) sets a variable on the DataMap.

A Viz Arc template interacting with the html page above after clicking the Execute Method 2 button:

Note: The browser used for rendering is based on CEF. It might not play all video codecs.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 88

The code of the Viz Arc template might look like this, note the ExecuteJavascript methods that allow you to
interact with the web page.

Global.OnButtonPressed = function (id)
{
 switch(id)
 {
 case "reloadBrowser":
 webview_0.Reload()
 break
 case "backBrowser":
 webview_0.GoBack()
 break
 case "backBrowser":
 webview_0.GoFoward()
 break
 case "exe1":
 webview_0.ExecuteJavascript("someFunction1")
 break
 case "exe2":
 webview_0.ExecuteJavascript("someFunction2", "one", "two")
 break
 }
}

Bool

 bool Value [Get, Set]
 Gets/sets the parameter's bool value.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 89

Button

 void Click ()
 Triggers a click event on the button parameter.

 string BackgroundImage
 Gets/sets the path to the background image. It can be either a local file path (for example, c:/tmp/

someimage.png) a Graphic Hub path (for example, IMAGE*/project/A/imageButton) or a URL (for
example, http://storage.internal/image.jpg).

 string ImageMargin
 Gets/sets the margins in pixels of the background image. Specify either one, two or four comma

separated margins. A value of 5 applies a margin of 5 pixels in all directions, a value of 5, 3
applies a margin of 5 pixels on the left and right and a margin of 3 at the top and bottom. A value of
1, 2, 3, 4 applies the respective margins in the order left, top, right and bottom.

 string DirectorPath
 Gets/sets the Stage Director to be executed on click. For example, $Director$SubDirector

 string DirectorExecute
 Gets/sets the type of action type to execute on click. Possible values are <nothing>, START, CONTINUE,

CONTINUE REVERSE, PAUSE or RESET.
 string ActionExecute

 Gets/sets the name or UUID of the action to be executed on click.
 bool TakeEngineSnapshotSync (width = -1, height = -1, withAlpha = true, timeoutMS = 5000)

 Takes a snapshot from Viz Engine. Viz Engine is selected from the currently selected channel or in
template designer it is taken from the Viz Editing Engine. This command works only with Viz Engine.

 width of the snapshot in pixels. -1 uses the button's current width. 0 captures the full
frame width.

 height of the snapshot in pixels. -1 uses the button's current height. 0 captures the full
frame height.

 withAlpha true , captures with alpha channel. When false , captures without alpha.
 timeout in milliseconds for the snapshot operation.

 async <bool> TakeEngineSnapshot(width = -1, height = -1, withAlpha = true, timeoutMS = 5000)
 awaitable method of the TakeEngineSnapshotSync.

 void ClearSnapshot()
 Clears the snapshot background image and resets all related properties to their default values.

Toggle Button

 void SetCheckedColor (byte r, byte g, byte b, byte a = 255)
 Sets the toggle's color to the input RGBA color when the toggle is in it's checked state.

 string CheckedColor
 Gets/sets the toggle's color in Hex format, for example, #FF0A0A8C (#RRGGBBAA) when the toggle is

in it's checked state.
 int CheckedColorR

 Gets/sets the toggle's red color value in the range [0, 255] when the toggle is in it's checked state.
 int CheckedColorG

http://storage.internal/image.jpg

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 90

 Gets/sets the toggle's green color value in the range [0, 255] when the toggle is in it's checked state.
 int CheckedColorB

 Gets/sets the toggle's blue color value in the range [0, 255] when the toggle is in it's checked state.
 int CheckedColorA

 Gets/sets the toggle's alpha value in the range [0, 255] when the toggle is in it's checked state.
 string CheckedLabel

 Gets/sets the label text displayed when the button is in the checked state.
 string BackgroundImage

 Gets/sets the path to the background image. It can be either a local file path (for example, c:/tmp/
someimage.png) a Graphic Hub path (for example, IMAGE*/project/A/imageButton) or a URL (for
example, http://storage.internal/image.jpg).

 string ImageMargin
 Gets/sets the margins in pixels of the background image. Specify either one, two or four comma

separated margins. A value of 5 applies a margin of 5 pixels in all directions, a value of 5, 3
applies a margin of 5 pixels on the left and right and a margin of 3 at the top and bottom. A value of
1, 2, 3, 4 applies the respective margins in the order left, top, right and bottom.

 bool IsChecked
 Gets/sets the toggle button's state to checked or unchecked.

 string ContainerPath
 Gets/sets the Viz scene container path (for example, $object$ALL$left) to be used when

VisibilityCheckd/VisibilityUncheckd or KeyChecked/KeyUnchecked actions are set.
 string DirectorPath

 Gets/sets the Stage Director path (for example, $Director$SubDirector)to be executed when
DirectorCheckd/DirectorUnchecked actions are set.

 string ActionChecked
 The action name or uuid to be executed when the toggle button gets checked.

 string ActionUnchecked
 The action name or uuid to be executed when the toggle button gets unchecked.

 string VisibilityChecked
 Gets/sets the visibility of the container specified in ContainerPath when the toggle button gets

checked. Possible values are <nothing>, ON or OFF.
 string VisibilityUnchecked

 Gets/sets the visibility of the container specified in ContainerPath when the toggle button gets
unchecked. Possible values are <nothing>, ON or OFF

 string DirectorChecked
 Gets/sets the action to be executed on the director specified in DirectorPath when the toggle gets

checked. Possible values are <nothing>, START, CONTINUE, CONTINUE REVERSE, PAUSE or RESET.
 string DirectorUnchecked

 Gets/sets the action to be executed on the director specified in DirectorPath when the toggle gets
unchecked. Possible values are <nothing>, START, CONTINUE, CONTINUE REVERSE, PAUSE or RESET.

 string KeyChecked
 Gets/sets the key action of the container specified in ContainerPath when the toggle button gets

checked. Possible values are <nothing>, ACTIVE, INACTIVE, COMBINE WITH BG ON, COMBINE WITH BG
OFF.

 string KeyUnchecked

http://storage.internal/image.jpg

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 91

 Gets/sets the key action of the container specified in ContainerPath when the toggle button gets un
checked. Possible values are <nothing>, ACTIVE, INACTIVE, COMBINE WITH BG ON, COMBINE WITH BG
OFF.

 string OverlayID
Gets/sets the Flowics overlay ID to control automatically when the button is toggled. Only works with
Flowics templates.

Double / Double Slider

 double Value [Get, Set]
 Gets/sets the parameter's double value.

 double MinValue [Get, Set]
 Gets/sets the parameter's minimum double value. Input value needs to be lower than the current

MaxValue.
 double MaxValue [Get, Set]

 Gets/sets the parameter's maximum double value. Input value needs to be higher than the current
MinValue.

 double MinRange [Get, Set]
 Gets/sets the parameter's minimum range double value.

 double MaxRange [Get, Set]
 Gets/sets the parameter's maximum range double value.

 bool RangeEnabled [Get, Set]
 If true, forces the slider to remain within the specified Min/Max range.

 bool ShowReset [Get, Set]
 Enable or disable the reset to the default button on the UI.

Dropdown / Radio

 string Value [Get, Set]
 Gets/sets the selected entry on the dropdown.

 int SelectedIndex [Get, Set]
 Gets/sets the selected index of the dropdown.

 int Count [Get]
 Gets the number of entries on the dropdown.

 int IndexOf (string option)
 Looks for an entry equal to option. Returns its index if found, -1 otherwise.

 void Insert (int index, string option)
 Inserts an entry with value option at index position. index needs to be between 0 and Count.

 void Add (string option)
 Adds an entry with value option atthe end of the entry list.

 void Remove (string option)
 Looks for an entry equal to option. Removes it if found.

 void RemoveAt (int index)
 Removes the entry at position index. index needs to be between 0 and Count.

 void SetItems (string[] entries)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 92

 Sets the dropdown's entry list to the input entries.
 string Get (int index)

 Returns the entry located at index position. index needs to be between 0 and Count.
 string parameter[int index]

 Array accessor for entries. Returns the entry located at index position.
 void Clear ()

 Removes all entries from the dropdown.

Int / Int Slider

 int Value [Get, Set]
 Gets/sets the parameter's int value.

 int MinValue [Get, Set]
 Gets/sets the parameter's minimum int value. Input value needs to be lower than the current

MaxValue.
 int MaxValue [Get, Set]

 Gets/sets the parameter's maximum int value. Input value needs to be higher than the current
MinValue.

MultiText / Text

 string Value [Get, Set]
 Gets/sets the parameter's text value.

Triplet

 double X [Get, Set]
 Gets/sets the parameter's X double value.

 double Y [Get, Set]
 Gets/sets the parameter's Y double value.

 double Z [Get, Set]
 Gets/sets the parameter's Z double value.

 double DefaultX [Get, Set]
 Gets/sets the default parameter’s X value.

 double DefaultY [Get, Set]
 Gets/sets the default parameter’s Y value.

 double DefaultZ [Get, Set]
 Gets/sets the default parameter’s Z value.

 bool XEnabled [Get, Set]
 Gets/sets the enabled status of the X value.

 bool YEnabled [Get, Set]
 Gets/sets the enabled status of the Y value.

 bool Z Enabled [Get, Set]
 Gets/sets the enabled status of the Z value.

 bool AllowProportional [Get, Set]

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 93

 Gets/sets whether the user can toggle the proportional lock.
 bool IsProportional [Get, Set]

 Gets/sets the state of the proportional lock.

Table

Properties

 string Value [Get]
 Gets an string containing the table content in a XML format (much like ControlList).

 int MinimumRows [Get, Set]
 Gets/sets the parameter's minimum number of rows. Input value needs to be lower than the current

MaximumRows.
 int MaximumRows [Get, Set]

 Gets/sets the parameter's maximum number of rows. Input value needs to be higher than the current
MinimumRows.

 int MinimumColumns [Get, Set]
 Gets/sets the parameter's minimum number of columns. Input value needs to be lower than the

current MaximumColumns.
 int MaximumColumns [Get, Set]

 Gets/sets the parameter's maximum number of columns. Input value needs to be higher than the
current MinimumColumns.

 int RowCount [Get]
 Gets the current number of rows on the table.

 int ColumnCount [Get]
 Gets the current number of columns on the table.

 int SelectedRow [Get]
 Gets the currently selected row. In case of multi-selection it returns the first selected row. If no row is

selected, -1 is returned.
 int SelectedIndex [Get]

 An alias for SelectedRow.
 bool MatchHeaders [Get, Set]

 Tries to match headers of the incoming data, with the names of the column header names of the
table.

 bool MatchDataColumns [Get, Set]
 Creates and matches columns of the table according to incoming data.

 bool MatchDataRows [Get, Set]
 Creates and matches as many rows in the table as there are in the incoming data.

 bool TransposeData [Get, Set]
 Swaps rows and columns, when set to true.

 bool TriggerOnAllChanges [Get, Set]
 Triggers the OnTableCellValueChanged callback when set to true, for when a table cell value has

been changed by user input.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 94

Methods

Cell Handling

 BaseCell Accessor [int row, int column] [Get]
 Gets the cell located at row-indexed row and column-indexed column.

 BaseCell GetCell (int row, int column)
 Gets the cell located at row-indexed row and column-indexed column.

 void SetCellValue (int row, int col, dynamic value)
 Sets the cell’s value (located at [row, column]) to value. [dynamic] value can either be a string or have

a type that is compatible with the target cell.
 stringGetCellValue (int row, int col)

 Gets the cell’s (located at [row, column]) string value representation.
 void ClearColumnValues (int columnIndex)

 Resets all the cell’s values in columnIndex column.
 void ClearRowValues (int rowIndex)

 Resets all the cell’s values in rowIndex row.
 void ClearAllValues ()

 Resets all the cell’s values.
 void Clear ()

 Removes all the content (all columns and rows are deleted).

Columns Handling

Inserting a column from code requires the user to specify the type of column that needs to be created, the valid
column types are:

 bool: Column with BoolCell
 string: Column with StringCell
 int: Column with IntCell
 ivec2: Column with IntDupletCell
 ivec3: Column with IntTripletCell
 double: Column with DoubleCell
 dvec2: Column with DoubleDupletCell
 dvec3: Column with DoubleTripletCell
 asset: Column with AssetCell
 dropdown: Column with dropdown items

All column interactions take into consideration the maximum and minimum number of columns of the table

 void AddColumn (string columnType)
 void AddColumn (string columnType, string name)

 Adds a column of type columnType named name if specified, otherwise the default is used.
 void AddColumn(string columnType, string controlObjectId, string displayName)

 Adds a column of type columnType named displayName. The controlObjectId is the internal name
used for ControlObject mapping.

 void AddMultipleColumn (int count, string columnType)
 Adds count columns of columnType type.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 95

 void InsertColumn (int index, string columnType)
 void InsertColumn (int index, string columnType, string name)

 Inserts a column at index index of columnType type named name if specified, otherwise the default is
used.

 void InsertColumn(int index, string columnType, string controlObjectId, string displayName)
 Inserts a column at index index of columnType type named displayName. The controlObjectId is the

internal name used for ControlObject mapping.
 vodi InsertMultipleColumn (int index, string columnType, int count)

 Inserts count columns at index index of columnType type.
 void RemoveColumnAt (int index)

 Removes column at index index.
 void MoveColumn (int targetIndex, int newPosition)

 Moves column from targetIndex position to newPosition.
 void ClearColumns ()

 Removes all columns.
 double GetColumnWidth (int index)

 Returns the column width in pixels of column.
 void SetColumnWidth (int index, double width)

 Sets the column width in pixels of column with index index.
 double GetColumnName (int index)

 Returns the column label.
 void SetColumnName (int index, string name)

 Sets the column label to name of column with index index.
 void SetColumnControlObjectID(int index, string controlObjectId)

 Sets the column's internal ControlObject ID used for mapping in case it is bound to a Viz Engine’s
ControlList object.

 int GetColumnIndexByName (string name)
 Returns the index of the first column matching name. Returns -1 otherwise.

 int GetColumnIndexByControlObjectID(string name)
 Returns the index of the first column matching the control object name. Returns -1 otherwise. This

can be used for ControlList generated tables in Viz Templates.
 string GetColumnControlObjectID(int index)

 In case the table is bound to a Viz Engine’s ControlList object, this function returns the id associated
to the colum’s ControlObject.

 void SetColumnReadOnly (int index, bool isReadOnly)
 void SetColumnReadOnly (string name, bool isReadOnly)

 Sets a column to be read only or not.
 bool GetColumnReadOnly (int column)
 bool GetColumnReadOnly (string name)

 Returns whether a column is read only.
 void SetColumnEditorOnly (int index, bool editorOnly)
 void SetColumnEditorOnly (string name, bool editorOnly)
 bool GetColumnEditorOnly (int column)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 96

DropDown Handling

 void SetDropdownOptions (int column, string [] options)
 Set dropdown items for an entire column (column must be of type 'dropdown')

 string[] GetDropDownOptions (int column)
 Returns a list of dropdown options for column.

 void AddDropdownOption (int column, string option)
 Appends option to all dropdowns in column.

 void RemoveDropdownOption (int column, string option)
 Removed the first occurence of option from all dropdowns in column.

 void ClearDropdownOption (int column)
 Clears all dropdowns in column.

 void SetCellDropdownOptions (int row, int column, string [] options)
 Set dropdown items in specific cell (column must be of type 'dropdown')

 string[] GetCellDropdownOptions (int row, int column)
 Returns an array of the items of the dropdown in row/column.

 void ClearCellDropdownOptions (int row, int column)
 Clears the items of the items of the dropdown in row/column

Rows Handling

All row interactions take into consideration the maximum and minimum number of rows of the table

 void SetNumberRows (int count)
 Adds/removes rows until the table’s RowCount is equal to count.

 void AddRow ()
 Adds a Row to the table.

 void AddMultipleRow (int count)
 Adds count rows to the table.

 void InsertRow (int index)
 Inserts a row at index position to the table.

 void InsertMultipleRow (int index, int count)
 Inserts count rows at index position to the table.

 void RemoveRowAt (int index)
 Removes row at index position.

 void MoveRow (int targetIndex, int newPosition)
 Moves row from targetIndex position to newPosition.

 void ClearRows ()
 Removes all rows.

Table Parameter Example

// Open the cvs file with the starters, parse the content and add all riders to the
RaceTable (TableParameter)
function LoadRaceTable()
{

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 97

 // Setup columns from UI, Comment if already done manually
 //RaceTable.Clear()
 //RaceTable.AddColumn("string", "Horse")
 //RaceTable.AddColumn("string", "Trainer")
 //RaceTable.AddColumn("string", "Jockey")
 //RaceTable.AddColumn("string", "Owner")
 //RaceTable.AddColumn("string", "Colors")
 //RaceTable.AddColumn("string", "Horse CN")
 //RaceTable.AddColumn("asset", "Silk")

 // Clear rows
 RaceTable.ClearRows()

 var i = 0
 var FileContent = arc.ReadTextFile("D:/Horses/Starter.csv")
 var EntryArr = FileContent.split("\n")

 // First line is for the headers, ignore it
 for(i = 1; i < EntryArr.length; i++)
 {
 // Split the rider content
 var splitContent = EntryArr[i].split(",")

 // CVS file has great amount of data but we only want to display certain
stuff
 RaceTable.AddRow()
 RaceTable.GetCell(i-1, 0).Value = splitContent [19]
 RaceTable.GetCell(i-1, 1).Value = splitContent [22]
 RaceTable.GetCell(i-1, 2).Value = splitContent [25]
 RaceTable.GetCell(i-1, 3).Value = splitContent [27]
 RaceTable.GetCell(i-1, 4).Value = splitContent [34]
 RaceTable.GetCell(i-1, 5).Value = splitContent [20]
 // image assets need to be assigned using the SetCellValue method
 RaceTable.SetCellValue(i-1, 6, splitContent[21])
 }
}

4.1.40 Unreal
These are helper functions to invoke BluePrint functions:

 void InvokeBPFunction (string blueprintName, string functionName, params object[] arg)
 Invokes the function functionName on the Blueprint blueprintName, with a variable number of

parameters (typically strings and/or numbers).
 void InvokeBPFunction (string blueprintName, string functionName)

 Invokes the function functionName on the Blueprint blueprintName, without any arguments.

The methods are invoked on all Unreal Engines of the template’s currently selected channel.

Global.OnExecute = function ()
{

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 98

 // before executing the template, update some data on the Blueprint invoking
updateData
 InvokeBPFunction("BP_main", "updateData", "Hello", "World", 42.0, 3)
 // change the appearance of the car
 InvokeBPFunction("BP_CarManager_Blue", "Change Car", 1, true, "This is the new
car model");
}

4.1.41 Flowics

Overview
Flowics templates can programmatically control individual overlays through scripting. These methods only work
with Flowics-type templates.

Available Methods

 void ShowOverlay(string ids)
 Show one or more overlays. Parameter is space-separated overlay IDs (for example, n10717 n10718).

 void HideOverlay(string ids)
 Hide one or more overlays. Parameter is space-separated overlay IDs.

 void SetOverlayState(string id, string state)
 Set overlay state for a single overlay. State can be in , out , or idle .

 void SetOverlayStates(string states)
 Set multiple overlay states using prefix notation. Use + to show, - to hide (for example, +n10717

-n10718).
 void ShowAllOverlays()

 Show all overlays in the template.
 void HideAllOverlays()

 Hide all overlays in the template.
 void GotoFirst(string overlayId, string controlId)

 Navigates to the first item in a Flowics list item.
 overlayId - Overlay ID (for example, n10717)
 controlId - Control ID within the overlay control (for example, list-1, carousel-main)

 void GotoNext(string overlayId, string controlId)
 Navigates to the next item in a Flowics control.

 overlayId - Overlay ID (for example, n10717)
 controlId - Control ID within the overlay control (for example, list-1, carousel-main)

 void GotoPrev(string overlayId, string controlId)
 Navigates to the previous item in a Flowics control.

 overlayId - Overlay ID (for example, n10717)
 controlId - Control ID within the overlay control (for example, list-1, carousel-main)

 void GotoItem(string overlayId, string controlId, string path, string value)
 Navigates to a specific item in a Flowics list based on a field value match.

 overlayId - Overlay ID (for example, n10717)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 99

 controlId - Control ID within the overlay control (for example, list-1, carousel-main)
 path - Path to the field to match (for example, id, name)
 value - Value to search for in the specified field

 void FlowicsSetTimer(string timerId, string timerValue)
 Sets a Flowics timer/stopwatch to a specific value without starting it (paused state).

 timerId - The global data provider ID for the timer
 timerValue - The timer value to start from (for example, "00:00:00" or milliseconds)

 void FlowicsSetTimerAndPlay(string timerId, string timerValue)
 Sets a Flowics timer/stopwatch to a specific value and starts playing.

 timerId - The global data provider ID for the timer
 timerValue - The timer value to start from (for example, "00:00:00" or milliseconds)

 void FlowicsStartTimer(string timerId, string timerValue)
 An alias for above’s FlowicsSetTimerAndPlay.

 void FlowicsSetTimerAndPlayRange(string timerId, string timerValue, string timerStart, string timerEnd)
 Sets a Flowics timer/stopwatch with a range (start/stop values) and starts playing.

 timerId - The global data provider ID for the timer
 timerValue - The current clock value
 timerStart - The start value for the range
 timerEnd - The stop value for the range (timer stops when reached)

 void FlowicsPauseTimer(string timerId)
 Pauses a Flowics timer/stopwatch.

 timerId - The global data provider ID for the timer
 void FlowicsPlayTimer(string timerId)

 Plays/resumes a Flowics timer/stopwatch.
 timerId - The global data provider ID for the timer

 void FlowicsResumeTimer(string timerId)
 Alias for FlowicsPlayTimer.

 void FlowicsResetTimer(string timerId)
 Resets a Flowics timer/stopwatch to its initial value.

 timerId - The global data provider ID for the timer

Examples

Basic Overlay Control

function OnButtonPressed(id) {
 if (id=== "showLowerThird") {
 // Show single overlay
 ShowOverlay("n10717")
 }
 else if (id=== "hideLowerThird") {
 // Hide single overlay
 HideOverlay("n10717")
 }

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 100

}

Multiple Overlays

function showGraphicsPackage() {
 // Show multiple overlays at once (space-separated)
 ShowOverlay("n10717 n10718 n10719")
}

function hideGraphicsPackage() {
 HideOverlay("n10717 n10718 n10719")
}

Set Overlay State

function controlOverlay(overlayId, action) {
 if (action === "in") {
 SetOverlayState(overlayId, "in")
 }
 else if (action === "out") {
 SetOverlayState(overlayId, "out")
 }
 else if (action === "idle") {
 SetOverlayState(overlayId, "idle")
 }
}

Batch State Changes

function updateOverlayStates() {
 // Use prefix notation: + = show, - = hide
 // This shows n10717 and n10719, hides n10718
 SetOverlayStates("+n10717 -n10718 +n10719")
}

Show/Hide All

Global.OnExecute = function (){
 // Show all overlays when template goes on-air
 ShowAllOverlays()
}

Global.OnOut = function () {
 // Hide all overlays when template goes off-air

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 101

 HideAllOverlays()
}

ToggleButton Integration
Toggle buttons can automatically control Flowics overlays by setting the OverlayID property:

function ShowBreakingNews() {
 // Link toggle button to Flowics overlay
 myToggle.OverlayID = "n10717";
 // Now toggling the button automatically shows/hides the overlay
 myToggle.IsChecked = true; // Shows overlay
}

4.1.42 Video
Set the video and PTZ source.

 void SetVideoSource (string name)
 Sets the name of the preview source window.

 void SetNDIPTZVideoControl (string ptzControl)
 Sets the name of the NDI PTZ control overlay source.

 void SetFlowicsOutput (string URL)
 Sets the global Flowics output URL.

4.1.43 Using async/await
Some methods are declared async, meaning the method might be time consuming (for example, while waiting for
an answer from a server). To avoid locking up the UI, one can await an async method, such that Viz Arc can
continue to process other events like user interaction. The async method might be processed on a different thread.

The following example shows how to retrieve the version of the first engine of the active channel on a template:

Global.OnButtonPressed = async function (id)
{
 if(id == "getFromEngineButton"){
 let answer = await GetFromEngineAsync("VERSION", 3000)
 Console.WriteLine("engine version is " + answer)
 }
}

Note that it is mandatory to declare the calling functions as async, when using await. The async keyword can be
safely added to any Viz Arc callback, as shown with OnButtonPressed.

Note: These methods only work with Flowics templates. Calling them on Viz or Unreal templates has no
effect.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 102

Using try/catch
It is highly recommended to use a try/catch block around awaited methods, otherwise, eventual errors are not
detected

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 103

4.2 Profile
This section contains a list of properties and functions grouped by type that are useful for communicating with
Profile, Channel, and Engine (Viz Engine and Unreal Engine).

 Scripting Profile
 Scripting Channel
 Scripting Engine

4.2.1 Scripting Profile
 string Name [Get]

 Returns the profile's name.
 int NumChannels [Get]

 Returns the number of channels.
 ScriptingChannel VizEditingEngine [Get]

 Returns the configured Viz Editing Engine of the profile.
 ScriptingChannel UnrealEditingEngine [Get]

 Returns the configured Unreal Editing Engine of the profile.
 ScriptingChannel VizProgramChannel[Get]

 Returns the configured Viz program Engine of the profile.
 ScriptingChannel UnrealProgramChannel[Get]

 Returns the configured Unreal program Engine of the profile.
 ScriptingChannel VizPreviewChannel[Get]

 Returns the configured Viz preview Engine of the profile.
 ScriptingChannel UnrealPreviewChannel[Get]

 Returns the configured Unreal preview Engine of the profile.
 ScriptingChannel Accessor [int index] [Get]

 Returns the index-indexed Scripting Channel.
 ScriptingChannel GetChannel (int index)

 Returns the index-indexed Scripting Channel.
 ScriptingChannel GetChannel (string channelName)

 Returns the first channel found with name channelName.

4.2.2 Scripting Channel
 string Name [Get]

 Returns the channel's name.
 int NumChannels [Get]

 Returns numbers of Engines in the channel.
 ScriptingChannel Accessor [int index] [Get]

 Returns the index-indexed Scripting Engine Class.
 void SendSingleCommand (string command)

 Sends the command to all the Engines in the channel.
 void SendCommands (string[] commands)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 104

 Sends a list of commands to all the Engines in the channel.
 ScriptingEngine GetEngineByName (string name)

 Returns the first Engine found with name.

4.2.3 Scripting Engine
 void SendSingleCommand (string command)

 Sends the command to the Engine.
 void SendCommands (string[] commands)

 Sends a list of commands to the Engine.
 string QueryEngine (string command, int timeout = -1)

 Queries the Engine with command. If timeout is specified and larger than 0, the method times out
after timeout milliseconds if it does not receive an answer within that time.

 Task<string> QueryEngineAsync (string command, int timeout = -1)
 Queries the Engine with command asynchronously. If timeout is specified and larger than 0, the

method times out after timeout milliseconds if it does not receive an answer within that time.
 string GetFlowicsOutput()

 Returns the Flowics live output URL associated to the API token of this engine. Return null if it is not a
Flowics output engine.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 105

4.3 Control Object
After having accessed the action holding the list of ControlObjects thought the GetAction method, the single
ControlObjects can be retreived using the global method

 BaseControlObject GetControlObject(BaseAction action, string ControlObjectID)

Most Control Object types have the following generic properties:

 Text (String)
 This property adapts to all objects (execute string)
 IntControl.Text = "5"

 ImageControl.Text = "IMAGE*FolderA/SubfolderB/ImageName"
 ID (String)

 Returns ObjectID
 Description

 Returns the object description

Each Control Object type has specific properties:

 Control Container
 Control Image
 Control Material
 Control Omo
 Control Text
 Control List

 Single Cells Properties
 Control Integer
 Control Double
 Control Boolean

4.3.1 Control Container
Properties:

 Visibility
 Position

 posX (double)
 posY (double)
 posZ(double)

 Rotation
 rotX (double)
 rotY (double)
 rotZ (double)

 Scaling
 scaX (double)
 scaY (double)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 106

 scaZ (double)

This type doesn’t have the Text property.

4.3.2 Control Image
Properties:

 Path (string)
 Position

 posX (double)
 posY (double)

 Scaling
 scaX (double)
 scaY (double)

4.3.3 Control Material
Properties:

 Path (string)

4.3.4 Control Omo
Properties:

 Value (integer)

4.3.5 Control Text
Properties:

 Value (string)

4.3.6 Control List

Example:

sub OnInit()
 'declare variables
 dim objAction, table, cell
 dim output1, output2, output3
 'get table obj action
 objAction = arc.GetAction("object")
 table = arc.GetControlObject (objAction, "controlObj_ID")
 Console.WriteLine("Table name: " & table.Text)
 'set values in single cells inside the table
 table(0,0).value = false

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 107

Properties:

 Accessor
 table[int row, int col]: returns a cell
 nbcolumns (integer): number of columns
 nbrows (integer): numbers of rows

Single Cells Properties

Cell Type Additional
Information

Example

BaseCell Text (string) Sets or gets value as
string.

Common to every cell
type.

table(0,5).x= 12 (intCell)

table(0,5).text = "12"

(intCell)

BoolCell Value
(boolean)

table(0,5).active= true

DoubleCell Value (double) table(0,5).x= 12.8

DupletCell X (double)
Y (double)

table(0,5).text = "0.55 0.2"

GeomCell Value (string) table(0,5).value = "GEOM*/folder/geometry"

ImageCell Value (string) table(0,5).value = "IMAGE*/folder/image"

IntCell Value (integer)

MaterialCell Value (string) table(0,5).value = "MATERIAL*/folder/

material"

TextCell Value (string)

 table(0,1).value = 5
 table(2,5).x = 12
 table(3,6).value = "IMAGE*/Default/GER"
 'assign values to a variable and show in debug console
 output1 = table(0,0).Text
 output2 = table(0,1).Text
 output3 = table(0,2).Text
 Console.WriteLine("cell - " & output1 & " | " & output2 & " | " & output3)
end sub

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 108

Cell Type Additional
Information

Example

TripletCell X (double)
Y (double)
Z (double)

table(0,5).text = "0.55 0.23 1.23"

4.3.7 Control Integer
Properties:

 Value (integer)

4.3.8 Control Double
Properties:

 Value (double)

4.3.9 Control Boolean
Properties:

 Value (boolean)

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 109

5 Debugging Scripts

5.1 DevTools
You can use any chrome based web browser (for example, Google Chrome or Microsoft Edge) to step through Viz Arc
scripts.

1. Open your browser.
2. Enter chrome://inspect/ in the address bar.

3. Click Configure...

Add the host name where Viz Arc is running and specify the debug script port (by default, port 9222 for the

global script and port 9223 for the template builder script). Confirm by clicking the Done button.
4. Open a template in Viz Arc's template builder and start it.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 110

5. In the Chrome browser, you should now see the Viz Arc script available for debugging.

6. Click the inspect link to open the debugger. The first time you open the debugger it does not show any code.

Hit CTRL + P and select Module.

You'll now be able to set breakpoints and see the code.

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 111

7. Set a breakpoint and analyze your variables and code.

5.2 Visual Studio Code
You can debug scripts with Visual Studio Code when using V8 JavaScript in the global script or in any scripted
template.

1. Install and launch Visual Studio Code.
2. Set up one or more Viz Arc V8 debug configurations:

a. Click File > Preferences > Settings to open your user settings.
b. Locate or search for the Launch configuration and click Edit in settings.json.
c. Add the following section to the file:

{
 "debug.javascript.usePreview": false,
 "launch": {
 "version": "1.2.0",
 "configurations": [
 {
 "name": "Attach to Viz Arc Global Script on port 9222",
 "type": "node",
 "request": "attach",
 "protocol": "inspector",
 "address": "localhost",
 "port": 9222
 },

https://code.visualstudio.com/
https://code.visualstudio.com/

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 112

 {
 "name": "Attach to Viz Arc Template Scrip on port 9223",
 "type": "node",
 "request": "attach",
 "protocol": "inspector",
 "address": "localhost",
 "port": 9223
 }
]
 }
}

d. You can specify additional configurations for different hosts, port numbers, and other options.
See Node.js debugging in VS Code for more information.

e. Click File > Save.
3. If you’d like to debug your application remotely, you must also make sure that your firewall allows incoming

connections to your TCP port.
4. Attach the Visual Studio Code debugger to your application:

a. Click View > Debug to bring up the Debug view.
b. Select the appropriate debug configuration at the top of the Debug Side Bar.
c. Click Debug > Start Debugging.

Example screenshot showing a global script being stopped at a breakpoint.

See Also

Note: There are two different ports in use: One for the global script (default 9222) and one for template

scripts (default 9223). Template scripts can be debugged only when running in the designer. The ports
can be configured in the global configuration settings.

https://code.visualstudio.com/docs/nodejs/nodejs-debugging

Viz Arc Script Guide - 3.0

Copyright © 2026 Vizrt Page 113

 Node.js debugging in VS Code

https://code.visualstudio.com/docs/nodejs/nodejs-debugging

	Introduction to Viz Arc Script Guide
	View
	Properties
	Action
	Sample
	Alpha
	Chroma
	Command
	ControlObject
	Director
	Group
	Image
	Light
	Key
	Material
	MSE
	Multizone Chroma Key
	NDI
	Omo
	PBR
	Phong
	Scene Loader
	Script
	Shared Memory
	Telemetrics
	Text
	Tracking Hub Command
	Transformation
	Utah Router
	Unreal Animation
	Unreal Blueprint
	Unreal Dispatcher
	Unreal Scene Loader
	Unreal Sequencer
	Unreal Text
	Vinten
	Virtual Studio
	Visibility
	Viz Camera
	Viz Clip
	Viz PBR Material

	Classes
	Scripting
	General
	Action
	Playlist
	Control Object
	MIDI
	Art-Net DMX
	MQTT
	RabbitMQ
	Object Tracker
	Viz Arena
	Parameter
	Channel
	Viz Engine/Unreal Engine Communication
	Tracking Hub Command
	SMM Handling
	GPI
	Viz Pilot
	Timer
	StreamDeck
	Graphic Hub REST
	DataMap
	NDI
	File Handling
	Logging
	JSON
	Excel
	Callbacks
	Exposed Objects
	xHost
	Performance
	Garbage Collection
	SQL Sample
	SQLite Sample
	TcpSend
	HtmlAgility Example
	Main Script-only
	Template Script-only
	Common Callbacks
	Parameters
	Unreal
	Flowics
	Video
	Using async/await

	Profile
	Scripting Profile
	Scripting Channel
	Scripting Engine

	Control Object
	Control Container
	Control Image
	Control Material
	Control Omo
	Control Text
	Control List
	Control Integer
	Control Double
	Control Boolean

	Debugging Scripts
	DevTools
	Visual Studio Code

